Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Nov 17;98(12):fiac126.
doi: 10.1093/femsec/fiac126.

Genomic characterization of antifungal Acinetobacter bacteria isolated from the skin of the frogs Agalychnis callidryas and Craugastor fitzingeri

Affiliations

Genomic characterization of antifungal Acinetobacter bacteria isolated from the skin of the frogs Agalychnis callidryas and Craugastor fitzingeri

M A Cevallos et al. FEMS Microbiol Ecol. .

Abstract

Chytridiomycosis, a lethal fungal disease caused by Batrachochytrium dendrobatidis (Bd), is responsible for population declines and extinctions of amphibians worldwide. However, not all amphibian species are equally susceptible to the disease; some species persist in Bd enzootic regions with no population reductions. Recently, it has been shown that the amphibian skin microbiome plays a crucial role in the defense against Bd. Numerous bacterial isolates with the capacity to inhibit the growth of Batrachochytrium fungi have been isolated from the skin of amphibians. Here, we characterized eight Acinetobacter bacteria isolated from the frogs Agalychnis callidryas and Craugastor fitzingeri at the genomic level. A total of five isolates belonged to Acinetobacter pittii,Acinetobacter radioresistens, or Acinetobactermodestus, and three were not identified as any of the known species, suggesting they are members of new species. We showed that seven isolates inhibited the growth of Bd and that all eight isolates inhibited the growth of the phytopathogen fungus Botrytis cinerea. Finally, we identified the biosynthetic gene clusters that could be involved in the antifungal activity of these isolates. Our results suggest that the frog skin microbiome includes Acinetobacter isolates that are new to science and have broad antifungal functions, perhaps driven by distinct genetic mechanisms.

Keywords: antimicrobial; biosynthetic clusters; frog microbiome.

PubMed Disclaimer

Publication types

Substances