Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Sep 25;237(4822):1588-95.
doi: 10.1126/science.3629258.

Biomaterial-centered infection: microbial adhesion versus tissue integration

Biomaterial-centered infection: microbial adhesion versus tissue integration

A G Gristina. Science. .

Abstract

Biomaterials are being used with increasing frequency for tissue substitution. Complex devices such as total joint replacements and the total artificial heart represent combinations of polymers and metal alloys for system and organ replacement. The major barriers to the extended use of these devices are the possibility of bacterial adhesion to biomaterials, which causes biomaterial-centered infection, and the lack of successful tissue integration or compatibility with biomaterial surfaces. Interactions of biomaterials with bacteria and tissue cells are directed not only by specific receptors and outer membrane molecules on the cell surface, but also by the atomic geometry and electronic state of the biomaterial surface. An understanding of these mechanisms is important to all fields of medicine and is derived from and relevant to studies in microbiology, biochemistry, and physics. Modifications to biomaterial surfaces at an atomic level will allow the programming of cell-to-substratum events, thereby diminishing infection by enhancing tissue compatibility or integration, or by directly inhibiting bacterial adhesion.

PubMed Disclaimer

Publication types

LinkOut - more resources