An Adaptive Task-Related Component Analysis Method for SSVEP Recognition
- PMID: 36298064
- PMCID: PMC9607074
- DOI: 10.3390/s22207715
An Adaptive Task-Related Component Analysis Method for SSVEP Recognition
Abstract
Steady-State Visual Evoked Potential (SSVEP) recognition methods use a subject's calibration data to differentiate between brain responses, hence, providing the SSVEP-based brain-computer interfaces (BCIs) with high performance. However, they require sufficient calibration EEG trials to achieve that. This study develops a new method to learn from limited calibration EEG trials, and it proposes and evaluates a novel adaptive data-driven spatial filtering approach for enhancing SSVEP detection. The spatial filter learned from each stimulus utilizes temporal information from the corresponding EEG trials. To introduce the temporal information into the overall procedure, a multitask learning approach, based on the Bayesian framework, is adopted. The performance of the proposed method was evaluated into two publicly available benchmark datasets, and the results demonstrated that our method outperformed competing methods by a significant margin.
Keywords: EEG; brain–computer interfaces; multitask learning; spatial filtering; steady-state visual evoked potentials; task-related component analysis.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
References
-
- Kalaganis F.P., Georgiadis K., Oikonomou V.P., Laskaris N.A., Nikolopoulos S., Kompatsiaris I. Unlocking the Subconscious Consumer Bias: A Survey on the Past, Present, and Future of Hybrid EEG Schemes in Neuromarketing. Front. Neuroergonomics. 2021;2:1–13. doi: 10.3389/fnrgo.2021.672982. - DOI - PMC - PubMed
-
- Bin G., Gao X., Wang Y., Hong B., Gao S. VEP-based brain-computer interfaces: Time, frequency, and code modulations. IEEE Comput. Intell. Mag. 2009;4:22–26. doi: 10.1109/MCI.2009.934562. - DOI
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
