Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Oct-Dec;28(4):14604582221134406.
doi: 10.1177/14604582221134406.

Identification of colorectal cancer using structured and free text clinical data

Affiliations
Free article

Identification of colorectal cancer using structured and free text clinical data

Douglas F Redd et al. Health Informatics J. 2022 Oct-Dec.
Free article

Abstract

Colorectal cancer incidence has continually fallen among those 50 years old and over. However, the incidence has increased in those under 50. Even with the recent screening guidelines recommending that screening begins at age 45, nearly half of all early-onset colorectal cancer will be missed. Methods are needed to identify high-risk individuals in this age group for targeted screening. Colorectal cancer studies, as with other clinical studies, have required labor intensive chart review for the identification of those affected and risk factors. Natural language processing and machine learning can be used to automate the process and enable the screening of large numbers of patients. This study developed and compared four machine learning and statistical models: logistic regression, support vector machine, random forest, and deep neural network, in their performance in classifying colorectal cancer patients. Excellent classification performance is achieved with AUCs over 97%.

Keywords: Colon cancer; feature utilization; machine learning; model comparison; statistical models.

PubMed Disclaimer

Publication types

LinkOut - more resources