Ion mobility-resolved phosphoproteomics with dia-PASEF and short gradients
- PMID: 36300730
- DOI: 10.1002/pmic.202200032
Ion mobility-resolved phosphoproteomics with dia-PASEF and short gradients
Abstract
Mass spectrometry-based phosphoproteomics has identified >150,000 post-translational phosphorylation sites in the human proteome. To disentangle their functional relevance, complex experimental designs that require increased throughput are now coming into focus. Here, we apply dia-PASEF on a trapped ion mobility (TIMS) mass spectrometer to analyze the phosphoproteome of a human cancer cell line in short liquid chromatography gradients. At low sample amounts equivalent to ∼20 ug protein digest per analysis, we quantified over 13,000 phosphopeptides including ∼8700 class I phosphosites in 1 h without a spectral library. Decreasing the gradient time to 15 min yielded virtually identical coverage of the phosphoproteome, and with 7 min gradients we still quantified about 80% of the class I sites with a median coefficient of variation <10% in quadruplicates. We attribute this in part to the increased peak capacity, which effectively compensates for the higher peptide density per time unit in shorter gradients. Our data show a five-fold reduction in the number of co-isolated peptides with TIMS. In the most extreme case, these were positional isomers of nearby phosphosites that remained unresolved with fast liquid chromatography. In summary, our study demonstrates how key features of dia-PASEF translate to phosphoproteomics.
Keywords: PASEF; TIMS; data-independent acquisition; ion mobility; phosphoproteomics.
© 2022 The Authors. Proteomics published by Wiley-VCH GmbH.
Similar articles
-
Rapid and In-Depth Coverage of the (Phospho-)Proteome With Deep Libraries and Optimal Window Design for dia-PASEF.Mol Cell Proteomics. 2022 Sep;21(9):100279. doi: 10.1016/j.mcpro.2022.100279. Epub 2022 Aug 6. Mol Cell Proteomics. 2022. PMID: 35944843 Free PMC article.
-
High-Throughput Mass Spectrometry-Based Proteomics with dia-PASEF.Methods Mol Biol. 2022;2456:15-27. doi: 10.1007/978-1-0716-2124-0_2. Methods Mol Biol. 2022. PMID: 35612732
-
Enhancement of Proteome Coverage by Ion Mobility Fractionation Coupled to PASEF on a TIMS-QTOF Instrument.J Proteome Res. 2022 Aug 5;21(8):2036-2044. doi: 10.1021/acs.jproteome.2c00336. Epub 2022 Jul 24. J Proteome Res. 2022. PMID: 35876248 Free PMC article.
-
Improving Phosphoproteomics Profiling Using Data-Independent Mass Spectrometry.J Proteome Res. 2022 Aug 5;21(8):1789-1799. doi: 10.1021/acs.jproteome.2c00172. Epub 2022 Jul 25. J Proteome Res. 2022. PMID: 35877786 Review.
-
Trapped Ion Mobility Spectrometry and Parallel Accumulation-Serial Fragmentation in Proteomics.Mol Cell Proteomics. 2021;20:100138. doi: 10.1016/j.mcpro.2021.100138. Epub 2021 Aug 17. Mol Cell Proteomics. 2021. PMID: 34416385 Free PMC article. Review.
Cited by
-
diaPASEF Analysis for HLA-I Peptides Enables Quantification of Common Cancer Neoantigens.Mol Cell Proteomics. 2025 Apr;24(4):100938. doi: 10.1016/j.mcpro.2025.100938. Epub 2025 Mar 3. Mol Cell Proteomics. 2025. PMID: 40044040 Free PMC article.
-
diaTracer enables spectrum-centric analysis of diaPASEF proteomics data.bioRxiv [Preprint]. 2024 Oct 16:2024.05.25.595875. doi: 10.1101/2024.05.25.595875. bioRxiv. 2024. Update in: Nat Commun. 2025 Jan 2;16(1):95. doi: 10.1038/s41467-024-55448-8. PMID: 38854051 Free PMC article. Updated. Preprint.
-
Proteome-scale tissue mapping using mass spectrometry based on label-free and multiplexed workflows.bioRxiv [Preprint]. 2024 Jul 10:2024.03.04.583367. doi: 10.1101/2024.03.04.583367. bioRxiv. 2024. Update in: Mol Cell Proteomics. 2024 Nov;23(11):100841. doi: 10.1016/j.mcpro.2024.100841. PMID: 38496682 Free PMC article. Updated. Preprint.
-
Mass spectrometry-based multi-omics analysis reveals distinct molecular features in early and advanced stages of hepatocellular carcinoma.Heliyon. 2024 Sep 20;10(19):e38182. doi: 10.1016/j.heliyon.2024.e38182. eCollection 2024 Oct 15. Heliyon. 2024. PMID: 39381095 Free PMC article.
-
Simulation of mass spectrometry-based proteomics data with Synthedia.Bioinform Adv. 2022 Dec 19;3(1):vbac096. doi: 10.1093/bioadv/vbac096. eCollection 2023. Bioinform Adv. 2022. PMID: 36698761 Free PMC article.
References
REFERENCES
-
- Olsen, J. V., Blagoev, B., Gnad, F., Macek, B., Kumar, C., Mortensen, P., & Mann, M. (2006). Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell, 127, 635-648.
-
- Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144, 646-674.
-
- Franciosa, G., Smits, J. G. A., Minuzzo, S., Martinez-Val, A., Indraccolo, S., & Olsen, J. V. (2021). Proteomics of resistance to Notch1 inhibition in acute lymphoblastic leukemia reveals targetable kinase signatures. Nature Communications, 12, 2507.
-
- Jayavelu, A. K., Wolf, S., Buettner, F., Alexe, G., Häupl, B., Comoglio, F., Schneider, C., Doebele, C., Fuhrmann, D. C., Wagner, S., Donato, E., Andresen, C., Wilke, A C., Zindel, A., Jahn, D., Splettstoesser, B., Plessmann, U., Münch, S., Abou-El-Ardat, K., … Oellerich, T. (2022). The proteogenomic subtypes of acute myeloid leukemia. Cancer Cell, 40, 301-317.e12.
-
- Luo, J., Solimini, N. L., & Elledge, S. J. (2009). Principles of cancer therapy: Oncogene and non-oncogene addiction. Cell, 136, 823-837.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources