Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Dec 20;28(71):e202202429.
doi: 10.1002/chem.202202429. Epub 2022 Oct 27.

Studies towards the Synthesis of (+)-Dictyoxetane

Affiliations

Studies towards the Synthesis of (+)-Dictyoxetane

Joseph Benford-Ward et al. Chemistry. .

Abstract

The dolabellane-type diterpene dictyoxetane represents a significant challenge to synthetic organic chemistry. Methodology directed towards the total synthesis of naturally occurring (+)-dictyoxetane is reported. Catalytic asymmetric synthesis of the trans-hydrindane ring system is achieved through chemoselective deoxygenation of the Hajos-Parrish ketone. An alternative to the Garst-Spencer furan annulation is developed for the synthesis of a 2,5-dimethyl, tetrasubstituted furan, employing a tandem 5-exo-dig alcohol to alkyne cyclisation/aromatisation reaction as a key step. The (4+3) cycloaddition reaction of an oxyallyl cation with a tetrasubstituted furan is established on a cyclohexanone-derived model system, and a range of related (4+3) cycloadditions investigated on a homochiral, trans-hydrindane-fused furan, where regio- and diastereoselectivity is required for the natural product synthesis. In an alternative (4+2) Diels-Alder approach, a C2 -symmetric vinyl sulfoxide-based chiral ketene equivalent is used to prepare oxanorbornenes with the same oxygen bridge stereochemistry found in the 2,7-dioxatricyclo[4.2.1.03,8 ]nonane ring system of the natural product.

Keywords: cyclization; cycloaddition; diastereoselectivity; natural products; oxygen heterocycles.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Scheme 1
Scheme 1
Structure of (+)‐dictyoxetane 1 and core ring systems, our previously reported synthesis of racemic trans‐hydrindane 7, and application in Hugelshofer and Magauer's asymmetric synthesis of dictyoxetane. Conditions: a) ethylene glycol, pTSA, toluene, reflux under Dean‐Stark; b) OsO4, NMO, H2O, THF, t BuOH, 54 % (over 2 steps); c) PPh3, C2Cl6, i Pr2NEt, MeCN, 0→82 °C, 80 %; d) CeCl3, i PrMgCl, THF, 23 °C, 91 %; e) i) (S)‐(‐)‐α‐methylbenzylamine, pTSA, toluene, reflux under Dean‐Stark, then methyl vinyl ketone, 40 °C, then AcOH, H2O, 23 °C; ii) KOH, EtOH, 78 °C, 49 % (over 2 steps); f) Stewart‐Grubbs cat. (25 mol %), 2,6‐dichloro‐1,4‐benzoquinone, toluene, 111 °C, 55 %, 25 % recovered 9; g) TMSI, CH2Cl2, 0→23 °C, 92 %; h) O2, hυ, TPP, DCE, 0 °C; PPh3, 23 °C, 71 %; i) MsCl, NEt3, CH2Cl2, −78 °C; j) NaH, THF, 66 °C, 88 % (over 2 steps); k) NIS, CH2Cl2, 23 °C; l) H2, Pd/C, THF, 23 °C, 80 % (over 2 steps); pTSA=para‐toluenesulfonic acid, NMO=N‐methylmorpholine‐N‐oxide, TPP=tetraphenylporphyrin, Ms=methanesulfonyl, NIS=N‐iodosuccinimide.
Scheme 2
Scheme 2
Previous approaches to the dioxatricyclic core of dictyoxetane. Conditions: a) Zn, B(OEt)3, THF, rt, then Zn, CuCl, NH4Cl, MeOH, 15 °C→rt, 59 %; b) TBAF, THF, rt→reflux; c) MsCl, i Pr2NEt, MeCN, reflux, 45 %, isomer ratio 10 : 1 : 1 (only major shown); d) NaH, THF, reflux, 88 %; e) TMSOTf, CH2Cl2, −78 °C, 53 % (over 2 steps); f) BF3⋅OEt2, CH2Cl2, 0 °C, 72 %; g) CCl4, 80 °C, 92 %; h) NaOH, MeOH, rt; TBAF=tetrabutylammonium fluoride, Ms=methanesulfonyl, TMS=trimethylsilyl, Tf=trifluoromethanesulfonyl, NIS=N‐iodosuccinimide, Ts=para‐toluenesulfonyl, Ac=acetyl.
Scheme 3
Scheme 3
Proposed approach to dictyoxetane via tetrasubstituted furan 13.
Scheme 4
Scheme 4
Asymmetric synthesis of benzyl‐protected trans‐hydrindanone 24 from 2‐methylcyclopentan‐1,3‐dione. Conditions: a) methyl vinyl ketone, AcOH, H2O, 70 °C; b) (D)‐proline, DMF, 23 °C, then H2SO4, 73 % (over 2 steps), er 99.4:0.6; c) NaBH4, MeOH, −20 °C, >99 %; d) Im2CS, toluene, 110 °C, 87 %; e) NaH, CS2, MeI, THF, 23 °C, 85 %; f) PhOC(S)Cl, Py, DMAP, CH2Cl2, 23 °C; g) ethylene glycol, pTSA, benzene, reflux under Dean‐Stark, 18 42 %; 20 75 %; h) ethylene glycol, pTSA, benzene, reflux under Dean‐Stark, 22 72 % (2 steps); i) (TMS)3SiH, ACCN, toluene, 110 °C; j) K2OsO2(OH)4, NMO, t BuOH, H2O, 85 °C, 62 % (over 4 steps from 16); k) PPh3, C2Cl6, i Pr2NEt, MeCN, 0→82 °C, 96 %; l) i PrMgCl, CeCl3, THF, 0 °C, 99 %; m) KHMDS, BnBr, THF, 0 °C; n) HCl, THF, 23 °C, 80 % (over 2 steps); Im=imidazole, Py=pyridine, DMAP=4‐dimethylaminopyridine, pTSA=para‐toluenesulfonic acid, ACCN=1,1′‐azobis(cyclohexanecarbonitrile), NMO=N‐methylmorpholine‐N‐oxide, KHMDS=potassium bis(trimethylsilyl)amide.
Scheme 5
Scheme 5
Synthesis of model dioxatricyclic core precursor 30. Conditions: a) PBr3, DMF, CH2Cl2, 88 %; b) Pd(PPh3)2Cl2, CuI, Et3N, TMSCCH, DMF, 82 %; c) MeMgBr, THF, −78 °C, 93 %; d) TBAF, THF, 66 °C, used crude; e) 29, TMSOTf, CH2Cl2, −78 °C, 87 % (over 2 steps), dr 7.7 : 1. TMS=trimethylsilyl, Tf=trifluoromethanesulfonyl, TBAF=tetrabutylammonium fluoride, TES=triethylsilyl.
Scheme 6
Scheme 6
Attempted furan annulation on benzyl‐protected hydrindanone 24. Conditions: a) POCl3, DMF, CH2Cl2, 75 %; b) CH3CHO, LiHMDS, THF, −78 °C; c) CeCl3, n BuLi, TMSCCH, THF, −78 °C, 43 % 36, 8 % 37, 7 % 38, 25 % 36+37 (over 2 steps); LiHMDS=lithium bis(trimethylsilyl)amide.
Scheme 7
Scheme 7
Synthesis and furan annulation of TIPS‐protected hydrindanone 40. Conditions: a) KHMDS, TIPSCl, DMF, 0 °C; b) 4 M HCl, THF, 30 °C, 82 % (over 2 steps); c) PBr3, DMF, 0→80 °C, 75 %; d) TMSCCH, Pd(PPh3)2Cl2, Et3N, THF, 65 °C; e) MeMgCl, THF, −78 °C, 91 % (over 2 steps), dr 3 : 1; f) K2CO3, MeOH, THF, 60 °C, 98 %; KHMDS=potassium bis(trimethylsilyl)amide, TIPS=triisopropylsilyl.
Scheme 8
Scheme 8
Evaluation of a formal (4+3) cycloaddition approach to dictyoxetane using furan 43. Conditions: a) 45, Sc(OTf)3, CH2Cl2, 0 °C, 18 % 46 2 % 47 15 % 48 9 % 49 ; b) 50 or 51, Et3N, toluene, TFE, 16 °C; c) Zn dust, NH4Cl, MeOH, 60 °C, 80 % from 50, dr 1.4 : 1, 59 % from 51, dr 4 : 1; d) 55, toluene, 23 °C, 91 % dr 1 : 1 or 56, toluene, −78 °C to 23 °C, 93 % dr 1 : 1; e) 56, toluene, 23 °C then 110 °C, 95 % combined yield of a 1 : 1 : 1 : 1 mixture of four isomers. Tf=trifluoromethanesulfonyl, TFE=2,2,2‐trifluoroethanol, Naph=2‐naphthyl, TES=triethylsilyl, TIPS=triisopropylsilyl.
Scheme 9
Scheme 9
Alternative approach to intermediate 12.
Scheme 10
Scheme 10
Diels‐Alder cycloaddition of furan 43 with chiral ketene equivalent 65. Conditions: a) 65, CH2Cl2, 0 °C, 82 % combined yield of 66 and 67, 3 : 4 ratio of regioisomers; b) TFAA, NaI, acetone, −78 °C, 73 % combined yield; c) MeI, CaCO3, H2O, THF, 60 °C, 41 % 70, 44 % 71; TFAA=trifluoroacetic anhydride.

References

    1. Pullaiah K. C., Surapaneni R. K., Rao C. B., Albizati K. F., Sullivan B. W., Faulkner D. J., Cun-heng H., Clardy J., J. Org. Chem. 1985, 50, 3665–3666.
    1. Rao C. B., Pullaiah K. C., Surapaneni R. K., Sullivan B. W., Albizati K. F., Faulkner D. J., Cun-heng H., Clardy J., J. Org. Chem. 1986, 51, 2736–2742.
    1. None
    1. Reinecke J., Hoffmann H. M. R., Chem. Eur. J. 1995, 1, 368–373;
    1. Wittenberg J., Beil W., Hoffmann H. M. R., Tetrahedron Lett. 1998, 39, 8259–8262;

LinkOut - more resources