Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Dec;14(12):1383-1389.
doi: 10.1038/s41557-022-01044-6. Epub 2022 Oct 27.

Controlling anisotropic properties by manipulating the orientation of chiral small molecules

Affiliations

Controlling anisotropic properties by manipulating the orientation of chiral small molecules

Jessica Wade et al. Nat Chem. 2022 Dec.

Abstract

Chiral π-conjugated molecules bring new functionality to technological applications and represent an exciting, rapidly expanding area of research. Their functional properties, such as the absorption and emission of circularly polarized light or the transport of spin-polarized electrons, are highly anisotropic. As a result, the orientation of chiral molecules critically determines the functionality and efficiency of chiral devices. Here we present a strategy to control the orientation of a small chiral molecule (2,2'-dicyano[6]helicene) by the use of organic and inorganic templating layers. Such templating layers can either force 2,2'-dicyano[6]helicene to adopt a face-on orientation and self-assemble into upright supramolecular columns oriented with their helical axis perpendicular to the substrate, or an edge-on orientation with parallel-lying supramolecular columns. Through such control, we show that low- and high-energy chiroptical responses can be independently 'turned on' or 'turned off'. The templating methodologies described here provide a simple way to engineer orientational control and, by association, anisotropic functional properties of chiral molecular systems for a range of emerging technologies.

PubMed Disclaimer

References

    1. Frédéric, L., Desmarchelier, A., Favereau, L. & Pieters, G. Designs and applications of circularly polarized thermally activated delayed fluorescence molecules. Adv. Funct. Mater. 31, 2010281 (2021). - DOI
    1. Zhang, D.-W., Li, M. & Chen, C.-F. Recent advances in circularly polarized electroluminescence based on organic light-emitting diodes. Chem. Soc. Rev. 49, 1331–1343 (2020). - DOI
    1. Schulz, M. et al. Giant intrinsic circular dichroism of prolinol-derived squaraine thin films. Nat. Commun. 9, 2413 (2018). - DOI
    1. Schulz, M. et al. Chiral excitonic organic photodiodes for direct detection of circular polarized light. Adv. Funct. Mater. 29, 1900684 (2019). - DOI
    1. MacKenzie, L. E. & Pal, R. Circularly polarized lanthanide luminescence for advanced security inks. Nat. Rev. Chem. 5, 109–124 (2021). - DOI

Publication types

LinkOut - more resources