[Future of interventional cardiology : Does everything revolve around AI and robotics?]
- PMID: 36305916
- DOI: 10.1007/s00059-022-05146-2
[Future of interventional cardiology : Does everything revolve around AI and robotics?]
Abstract
In recent years, software-assisted imaging systems, such as computed tomography, have contributed to the improvement of noninvasive options for the diagnostics of coronary heart disease (CHD). In addition, the possibilities of individual morphological and functional atherosclerotic plaque evaluation could be further refined, e.g. by the use of optical coherence tomography or the quantitative flow ratio (QFR). Due to the development of robotic-assisted catheter systems, it has been possible to make coronary interventions more precise and with less radiation exposure for the examiner. It is to be expected that in the future even better algorithms will be developed by the analysis of very large amounts of data. These will enable a more exact, dynamic and personalized prediction of, e.g. treatment success or individual risk profiles, in order to positively and sustainably influence the treatment of patients with cardiovascular diseases.
Softwaregestützte Bildgebungsverfahren, wie die koronare Computertomographie, haben in den letzten Jahren dazu beigetragen, die nicht-invasiven Optionen zur Diagnostik bei koronarer Herzkrankheit (KHK) zu verbessern. Zudem konnten z. B. durch die Anwendung der optischen Kohärenztomographie oder der quantitativen Flussreserve (QFR) die Möglichkeiten der individuellen morphologischen wie auch der funktionellen atheroklerotischen Plaqueevaluation weiter verfeinert werden. Durch die Entwicklung von roboterassistierten Kathetersystemen ist es zudem gelungen, Koronarinterventionen präzise und weniger strahlungsintensiv für den Untersucher zu gestalten. Es ist zu erwarten, dass zukünftig durch die Analyse sehr großer Datenmengen noch bessere Algorithmen entwickelt werden, die eine genaue, dynamische und personalisierte Voraussage von z. B. Therapieerfolgen erlauben oder individuelle Risikoprofile erstellen, um die Behandlung von Patienten mit kardiovaskulären Erkrankungen nachhaltig positiv zu beeinflussen.
Keywords: Artificial intelligence; Coronary angiography; Coronary interventions; Optical coherence tomography; Robot-assisted catheter systems.
© 2022. The Author(s), under exclusive licence to Springer Medizin Verlag GmbH, ein Teil von Springer Nature.
References
Literatur
-
- Todesursachen Deutschland 2020.
-
- Andreini D, Modolo R, Katagiri Y et al (2019) Impact of fractional flow reserve derived from coronary computed tomography angiography on heart team treatment decision-making in patients with Multivessel coronary artery disease: insights from the SYNTAX III REVOLUTION trial. Circ Cardiovasc Interv. https://doi.org/10.1161/CIRCINTERVENTIONS.118.007607 - DOI - PubMed
-
- de Bruyne B, Pijls NHJ, Kalesan B et al (2012) Fractional flow reserve–guided PCI versus medical therapy in stable coronary disease. N Engl J Med 367:991–1001. https://doi.org/10.1056/NEJMoa1205361 - DOI - PubMed
-
- van Nunen LX, Zimmermann FM, Tonino PAL et al (2015) Fractional flow reserve versus angiography for guidance of PCI in patients with multivessel coronary artery disease (FAME): 5‑year follow-up of a randomised controlled trial. Lancet. https://doi.org/10.1016/S0140-6736(15)00057-4 - DOI - PubMed
-
- Xu B, Tu S, Song L et al (2021) Angiographic quantitative flow ratio-guided coronary intervention (FAVOR III China): a multicentre, randomised, sham-controlled trial. Lancet. https://doi.org/10.1016/S0140-6736(21)02248-0 - DOI - PubMed - PMC
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical
