Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Dec;71(12):1589-1602.
doi: 10.1007/s00011-022-01628-5. Epub 2022 Oct 28.

RCAN1 deficiency aggravates sepsis-induced cardiac remodeling and dysfunction by accelerating mitochondrial pathological fission

Affiliations

RCAN1 deficiency aggravates sepsis-induced cardiac remodeling and dysfunction by accelerating mitochondrial pathological fission

Jinqiang Zhuang et al. Inflamm Res. 2022 Dec.

Abstract

Objective: Cardiac dysfunction and remodeling are serious complications of sepsis and are the main causes of death in sepsis. RCAN1 is a feedback regulator of cardiac hypertrophy. Here, we aim to investigate the role of RCAN1 in septic cardiomyopathy.

Methods: Mice were randomly divided into control-WT, control-RCAN1-/-, LPS-induced WT and LPS-induced RCAN1-/- groups, some with Midiv-1 or KN93 treatment. The protein levels of RCAN1, p-ERK1/2, NFAT3, Drp1, p-Drp1, p-CaMKII in mouse hearts or cultured cardiomyocytes were determined by Western blotting. Myocardial function was assessed by echocardiography. Cardiac hypertrophy and fibrosis were detected by H&E and Masson's trichrome staining. Mitochondrial morphology was examined by transmission electron microscope. Serum level of LDH was detected by ELISA.

Results: Our data show that RCAN1 was downregulated in septic mouse heart and LPS-induced cardiomyocytes. RCAN1-/- mice showed a severe impairment of cardiac function, and increased myocardial hypertrophy and fibrosis. The protein levels of NFAT3 and p-ERK1/2 were significantly increased in the heart tissues of RCAN1-/- mice. Further, RCAN1 deficiency aggravated sepsis-induced cardiac mitochondrial injury as indicated by increased ROS production, pathological fission and the loss of mitochondrial membrane potential. Inhibition of fission with Mdivi-1 reversed LPS-induced cardiac hypertrophy, fibrosis and dysfunction in RCAN1-/- mice. Moreover, RCAN1 depletion promoted mitochondrial translocation of CaMKII, which enhanced fission and septic hypertrophy, while inhibition of CaMKII with KN93 reduced excessive fission, improved LPS-mediated cardiac remodeling and dysfunction in RCAN1-/- mice.

Conclusions: Our finding demonstrated that RCAN1 deficiency aggravated mitochondrial injury and septic cardiomyopathy through activating CaMKII. RCAN1 serves as a novel therapeutic target for treatment of sepsis-related cardiac remodeling and dysfunction.

Keywords: CaMKII; Cardiac remodeling; Mitochondria; RCAN1; Sepsis.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):801–10. - DOI - PubMed - PMC
    1. Tang D, Wang H, Billiar TR, Kroemer G, Kang R. Emerging mechanisms of immunocoagulation in sepsis and septic shock. Trends Immunol. 2021;42(6):508–22. - DOI - PubMed - PMC
    1. Nedeva C, Menassa J, Duan M, Liu C, Doerflinger M, Kueh AJ, et al. TREML4 receptor regulates inflammation and innate immune cell death during polymicrobial sepsis. Nat Immunol. 2020;21(12):1585–96. - DOI - PubMed
    1. Lin Y, Xu Y, Zhang Z. Sepsis-induced myocardial dysfunction (SIMD): the pathophysiological mechanisms and therapeutic strategies targeting mitochondria. Inflammation. 2020;43(4):1184–200. - DOI - PubMed
    1. Luo Y, Jiang N, May HI, Luo X, Ferdous A, Schiattarella GG, et al. Cooperative binding of ETS2 and NFAT Links Erk1/2 and calcineurin signaling in the pathogenesis of cardiac hypertrophy. Circulation. 2021;144(1):34–51. - DOI - PubMed - PMC

LinkOut - more resources