Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Nov;119(44):e2203150119.
doi: 10.1073/pnas.2203150119. Epub 2022 Oct 28.

Observing many researchers using the same data and hypothesis reveals a hidden universe of uncertainty

Nate Breznau  1 Eike Mark Rinke  2 Alexander Wuttke  3   4 Hung H V Nguyen  1   5 Muna Adem  6 Jule Adriaans  7 Amalia Alvarez-Benjumea  8 Henrik K Andersen  9 Daniel Auer  3 Flavio Azevedo  10 Oke Bahnsen  11 Dave Balzer  12 Gerrit Bauer  13 Paul C Bauer  3 Markus Baumann  14   15 Sharon Baute  16 Verena Benoit  4   17 Julian Bernauer  3 Carl Berning  18 Anna Berthold  17 Felix S Bethke  19 Thomas Biegert  20 Katharina Blinzler  21 Johannes N Blumenberg  22 Licia Bobzien  23 Andrea Bohman  24 Thijs Bol  25   26 Amie Bostic  27 Zuzanna Brzozowska  28   29 Katharina Burgdorf  11 Kaspar Burger  25   30   31 Kathrin B Busch  32 Juan Carlos-Castillo  33   34 Nathan Chan  35 Pablo Christmann  36 Roxanne Connelly  37 Christian S Czymara  38 Elena Damian  39 Alejandro Ecker  3 Achim Edelmann  40 Maureen A Eger  24 Simon Ellerbrock  3   11 Anna Forke  32 Andrea Forster  41 Chris Gaasendam  42 Konstantin Gavras  11 Vernon Gayle  37 Theresa Gessler  43 Timo Gnambs  44 Amélie Godefroidt  45 Max Grömping  46 Martin Groß  47 Stefan Gruber  48 Tobias Gummer  36 Andreas Hadjar  49   50   51   52 Jan Paul Heisig  53   54 Sebastian Hellmeier  55 Stefanie Heyne  3 Magdalena Hirsch  56 Mikael Hjerm  24 Oshrat Hochman  36 Andreas Hövermann  50   57 Sophia Hunger  58 Christian Hunkler  59 Nora Huth  60 Zsófia S Ignácz  38 Laura Jacobs  61 Jannes Jacobsen  62   63 Bastian Jaeger  64 Sebastian Jungkunz  65   66   67 Nils Jungmann  21 Mathias Kauff  68 Manuel Kleinert  69 Julia Klinger  70 Jan-Philipp Kolb  71 Marta Kołczyńska  72 John Kuk  73 Katharina Kunißen  12 Dafina Kurti Sinatra  32 Alexander Langenkamp  38 Philipp M Lersch  7   74 Lea-Maria Löbel  7 Philipp Lutscher  75 Matthias Mader  76 Joan E Madia  77   78 Natalia Malancu  79 Luis Maldonado  80 Helge Marahrens  6 Nicole Martin  81 Paul Martinez  82 Jochen Mayerl  9 Oscar J Mayorga  83 Patricia McManus  6 Kyle McWagner  84 Cecil Meeusen  42 Daniel Meierrieks  56 Jonathan Mellon  81 Friedolin Merhout  85 Samuel Merk  86 Daniel Meyer  87 Leticia Micheli  88 Jonathan Mijs  89 Cristóbal Moya  90 Marcel Neunhoeffer  11 Daniel Nüst  91 Olav Nygård  92 Fabian Ochsenfeld  93 Gunnar Otte  12 Anna O Pechenkina  94 Christopher Prosser  95 Louis Raes  96 Kevin Ralston  37 Miguel R Ramos  97 Arne Roets  98 Jonathan Rogers  99 Guido Ropers  11 Robin Samuel  49   52 Gregor Sand  48 Ariela Schachter  100 Merlin Schaeffer  101 David Schieferdecker  102 Elmar Schlueter  69 Regine Schmidt  17 Katja M Schmidt  7 Alexander Schmidt-Catran  38 Claudia Schmiedeberg  13 Jürgen Schneider  103 Martijn Schoonvelde  104   105 Julia Schulte-Cloos  106 Sandy Schumann  107 Reinhard Schunck  60 Jürgen Schupp  7 Julian Seuring  108 Henning Silber  109 Willem Sleegers  64 Nico Sonntag  12 Alexander Staudt  32 Nadia Steiber  110 Nils Steiner  18 Sebastian Sternberg  32 Dieter Stiers  111 Dragana Stojmenovska  26 Nora Storz  112 Erich Striessnig  113 Anne-Kathrin Stroppe  21 Janna Teltemann  114 Andrey Tibajev  92 Brian Tung  100 Giacomo Vagni  25 Jasper Van Assche  98   115 Meta van der Linden  112 Jolanda van der Noll  116 Arno Van Hootegem  42 Stefan Vogtenhuber  117 Bogdan Voicu  118   119 Fieke Wagemans  120   121 Nadja Wehl  122 Hannah Werner  111 Brenton M Wiernik  123 Fabian Winter  8 Christof Wolf  3   11   124 Yuki Yamada  125 Nan Zhang  3 Conrad Ziller  65   126 Stefan Zins  127 Tomasz Żółtak  72
Affiliations

Observing many researchers using the same data and hypothesis reveals a hidden universe of uncertainty

Nate Breznau et al. Proc Natl Acad Sci U S A. 2022 Nov.

Erratum in

Abstract

This study explores how researchers' analytical choices affect the reliability of scientific findings. Most discussions of reliability problems in science focus on systematic biases. We broaden the lens to emphasize the idiosyncrasy of conscious and unconscious decisions that researchers make during data analysis. We coordinated 161 researchers in 73 research teams and observed their research decisions as they used the same data to independently test the same prominent social science hypothesis: that greater immigration reduces support for social policies among the public. In this typical case of social science research, research teams reported both widely diverging numerical findings and substantive conclusions despite identical start conditions. Researchers' expertise, prior beliefs, and expectations barely predict the wide variation in research outcomes. More than 95% of the total variance in numerical results remains unexplained even after qualitative coding of all identifiable decisions in each team's workflow. This reveals a universe of uncertainty that remains hidden when considering a single study in isolation. The idiosyncratic nature of how researchers' results and conclusions varied is a previously underappreciated explanation for why many scientific hypotheses remain contested. These results call for greater epistemic humility and clarity in reporting scientific findings.

Keywords: analytical flexibility; immigration and policy preferences; many analysts; metascience; researcher degrees of freedom.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing interest.

Figures

Fig. 1.
Fig. 1.
Broad variation in the findings from 73 teams testing the same hypothesis with the same data. The distribution of estimated AMEs across all converged models (n = 1,253) includes results that are negative (yellow; in the direction predicted by the given hypothesis the teams were testing), not different from zero (gray), or positive (blue) using a 95% CI. AME are xy standardized. The y axis contains two scaling breaks at ±0.05. Numbers inside circles represent the percentages of the distribution of each outcome inversely weighted by the number of models per team.
Fig. 2.
Fig. 2.
Variance in statistical results and substantive conclusions between and within teams is mostly unexplained by conditions, research design, and researcher characteristics. Decomposition of numerical variance taken from generalized linear multilevel regression models' AMEs (the top three rows). Explained deviance taken from multinomial logistic regressions using the substantive conclusions about the target hypothesis as the outcome submitted by the research teams (bottom row). We used informed stepwise addition and removal of predictors to identify which specifications could explain the most numeric variance (SI Appendix, Table S6) and others that could explain the most subjective conclusion deviance (SI Appendix, Table S7) while sacrificing the fewest degrees of freedom and maintaining the highest level of model fit based on log likelihood and AIC. We also used algorithms to test variable combinations, but these could not explain more meaningful variation (Methods). Assigned conditions were the division of participants into two different task groups and two different deliberation groups during the preparatory phase. Identified researcher decisions are the 107 common decisions taken in data preparation and statistical modeling across teams and their models. Researcher characteristics were identified through a survey of participants and multiitem scaling using factor analysis (SI Appendix, Fig. S3). The reader will find many other details in SI Appendix.
Fig. 3.
Fig. 3.
Researcher characteristics do not explain outcome variance between teams or within teams. The distribution of team average of AMEs (Left) and within-team variance in AMEs (Right) across researchers grouped according to mean splits (“lower” and “higher”) on methodological and topic expertise (potential competencies bias) and on prior attitudes toward immigration and beliefs about whether the hypothesis is true (potential confirmation bias). Log variance was shifted so that the minimum log value equals zero. Teams submitting only one model assigned a variance of zero. Pearson correlations along with a P value (“R”) are calculated using continuous scores of each researcher characteristic variable.

Comment in

References

    1. Solomon M., Social Empiricism (MIT Press, 2007).
    1. Oreskes N., Why Trust Science? (Princeton University Press, 2019). - PubMed
    1. Camerer C. F., et al. , Evaluating the replicability of social science experiments in Nature and Science between 2010 and 2015. Nat. Hum. Behav. 2, 637–644 (2018). - PubMed
    1. Open Science Collaboration, PSYCHOLOGY. Estimating the reproducibility of psychological science. Science 349, aac4716 (2015). - PubMed
    1. Ritchie S., Science Fictions: How Fraud, Bias, Negligence, and Hype Undermine the Search for Truth (Metropolitan Books, 2020).

Publication types