Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Jul-Dec:790:108444.
doi: 10.1016/j.mrrev.2022.108444. Epub 2022 Oct 25.

Code inside the codon: The role of synonymous mutations in regulating splicing machinery and its impact on disease

Affiliations
Review

Code inside the codon: The role of synonymous mutations in regulating splicing machinery and its impact on disease

Avik Sarkar et al. Mutat Res Rev Mutat Res. 2022 Jul-Dec.

Abstract

In eukaryotes, precise pre-mRNA processing, including alternative splicing, is essential to carry out the intricate protein translation process. Both point mutations (that alter the translated protein sequence) and synonymous mutations (that do not alter the translated protein sequence) are capable of affecting the splicing process. Synonymous mutations are known to affect gene expression via altering mRNA stability, mRNA secondary structure, splicing processes, and translational kinetics. In higher eukaryotes, precise splicing is regulated by three weakly conserved cis-elements, 5' and 3' splice sites and the branch site. Many other cis-acting elements (exonic/intronic splicing enhancers and silencers) and trans-acting splicing factors (serine and arginine-rich proteins and heterogeneous nuclear ribonucleoproteins) have also been found to enhance or suppress the splicing process. The appearance of synonymous mutations in cis-acting elements can alter the splicing process by changing the binding pattern of splicing factors to exonic splicing enhancers or silencer motifs. This results in exon skipping, intron retention, and various other forms of alternative splicing, eventually leading to the emergence of a wide range of diseases. The focus of this review is to elucidate the role of synonymous mutations and their impact on abnormal splicing mechanisms. Further, this study highlights the function of synonymous mutation in mediating abnormal splicing in cancer and development of X-linked, and autosomal inherited diseases.

Keywords: Abnormal splicing; Exonic/intronic splicing enhancers; Minigene; Synonymous mutation; X-linked disorders; mRNA stability.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

Publication types

LinkOut - more resources