Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jan;193(1):73-83.
doi: 10.1016/j.ajpath.2022.09.011. Epub 2022 Oct 26.

Stain-Independent Deep Learning-Based Analysis of Digital Kidney Histopathology

Affiliations
Free article

Stain-Independent Deep Learning-Based Analysis of Digital Kidney Histopathology

Nassim Bouteldja et al. Am J Pathol. 2023 Jan.
Free article

Abstract

Convolutional neural network (CNN)-based image analysis applications in digital pathology (eg, tissue segmentation) require a large amount of annotated data and are mostly trained and applicable on a single stain. Here, a novel concept based on stain augmentation is proposed to develop stain-independent CNNs requiring only one annotated stain. In this benchmark study on stain independence in digital pathology, this approach is comprehensively compared with state-of-the-art techniques including image registration and stain translation, and several modifications thereof. A previously developed CNN for segmentation of periodic acid-Schiff-stained kidney histology was used and applied to various immunohistochemical stainings. Stain augmentation showed very high performance in all evaluated stains and outperformed all other techniques in all structures and stains. Without the need for additional annotations, it enabled segmentation on immunohistochemical stainings with performance nearly comparable to that of the annotated periodic acid-Schiff stain and could further uphold performance on several held-out stains not seen during training. Herein, examples of how this framework can be applied for compartment-specific quantification of immunohistochemical stains for inflammation and fibrosis in animal models and patient biopsy specimens are presented. The results show that stain augmentation is a highly effective approach to enable stain-independent applications of deep-learning segmentation algorithms. This opens new possibilities for broad implementation in digital pathology.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources