Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2023 Jan 1;216(Pt 3):114399.
doi: 10.1016/j.envres.2022.114399. Epub 2022 Oct 27.

Treatment technologies for olive mill wastewater with impacts on plants

Affiliations
Review

Treatment technologies for olive mill wastewater with impacts on plants

Sumera Shabir et al. Environ Res. .

Abstract

Olive mill wastewater (OMW), produced during olive oil production, contains high levels of salt contents, organic matter, suspended particles, and toxic chemicals (particularly phenols), which all result in increased biological and chemical oxygen demand. Olive Oil Mills' Wastes (OMW), which have dark brown color with unpleasant smell, consist mainly of water, high organic (mainly phenols and polyphenols) and low inorganic compounds (e.g. potassium and phosphorus), as well as grease. OMW components can negatively affect soil's physical, chemical, and biological properties, rendering it phytotoxic. However, OMW can positively affect plants' development when it's applied to the soil after pretreatment and treatment processes due to its high mineral contents and organic matter. There are various approaches for removing impurities and the treatment of OMW including chemical, biological, thermal, physiochemical, and biophysical processes. Physical techniques involve filtration, dilution, and centrifugation. Thermal methods include combustion and pyrolysis; biological techniques use anaerobic and aerobic techniques, whereas adsorption and electrocoagulation act as physiochemical methods, and coagulation and flocculation as biophysical methods. In contrast, combined biological treatment methods use co-digestion and composting. A comparison of the effects of both treated and untreated OMW samples on plant development and soil parameters can help us to understand the potential role of OMW in increasing soil fertility. This review discusses the impacts of untreated OMW and treated OMW in terms of soil characteristics, seed germination, and plant growth. This review summarizes all alternative approaches and technologies for pretreatment, treatment, and recovery of valuable byproducts and reuse of OMW across the world.

Keywords: Adsorbent; Environment; Filtration; Flocculation; Olea europaea L.; Olive mill wastewater; Phenols; Soil; composting; pyrolysis.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

Publication types

LinkOut - more resources