Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jan;54(1):189-197.
doi: 10.1161/STROKEAHA.122.040339. Epub 2022 Oct 31.

Optimal Cerebral Perfusion Pressure and Brain Tissue Oxygen in Aneurysmal Subarachnoid Hemorrhage

Affiliations

Optimal Cerebral Perfusion Pressure and Brain Tissue Oxygen in Aneurysmal Subarachnoid Hemorrhage

Murad Megjhani et al. Stroke. 2023 Jan.

Abstract

Background: Targeting a cerebral perfusion pressure optimal for cerebral autoregulation (CPPopt) has been gaining more attention to prevent secondary damage after acute neurological injury. Brain tissue oxygenation (PbtO2) can identify insufficient cerebral blood flow and secondary brain injury. Defining the relationship between CPPopt and PbtO2 after aneurysmal subarachnoid hemorrhage may result in (1) mechanistic insights into whether and how CPPopt-based strategies might be beneficial and (2) establishing support for the use of PbtO2 as an adjunctive monitor for adequate or optimal local perfusion.

Methods: We performed a retrospective analysis of a prospectively collected 2-center dataset of patients with aneurysmal subarachnoid hemorrhage with or without later diagnosis of delayed cerebral ischemia (DCI). CPPopt was calculated as the cerebral perfusion pressure (CPP) value corresponding to the lowest pressure reactivity index (moving correlation coefficient of mean arterial and intracranial pressure). The relationship of (hourly) deltaCPP (CPP-CPPopt) and PbtO2 was investigated using natural spline regression analysis. Data after DCI diagnosis were excluded. Brain tissue hypoxia was defined as PbtO2 <20 mmHg.

Results: One hundred thirty-one patients were included with a median of 44.0 (interquartile range, 20.8-78.3) hourly CPPopt/PbtO2 datapoints. The regression plot revealed a nonlinear relationship between PbtO2 and deltaCPP (P<0.001) with PbtO2 decrease with deltaCPP <0 mmHg and stable PbtO2 with deltaCPP ≥0mmHg, although there was substantial individual variation. Brain tissue hypoxia (34.6% of all measurements) was more frequent with deltaCPP <0 mmHg. These dynamics were similar in patients with or without DCI.

Conclusions: We found a nonlinear relationship between PbtO2 and deviation of patients' CPP from CPPopt in aneurysmal subarachnoid hemorrhage patients in the pre-DCI period. CPP values below calculated CPPopt were associated with lower PbtO2. Nevertheless, the nature of PbtO2 measurements is complex, and the variability is high. Combined multimodality monitoring with CPP/CPPopt and PbtO2 should be recommended to redefine individual pressure targets (CPP/CPPopt) and retain the option to detect local perfusion deficits during DCI (PbtO2), which cannot be fulfilled by both measurements interchangeably.

Keywords: brain; brain injuries, traumatic; hyperemia; infarction; partial pressure.

PubMed Disclaimer

Figures

Figure 1.
Figure 1.
The relationship between PbtO2 and deltaCPP. A: Natural spline regression analysis of hourly deltaCPP and PbtO2 pairs. B: PbtO2, CPP, PRx values and data availability separated by 5mmHg deltaCPP bins. Black line indicates the proportion of brain tissue hypoxia (BTH) from all measurements within a bin. C+D: Data separated by patients without DCI (C) or with (D) DCI.

References

    1. Lang EW, Diehl RR, Mehdorn HM. Cerebral autoregulation testing after aneurysmal subarachnoid hemorrhage: the phase relationship between arterial blood pressure and cerebral blood flow velocity. Crit Care Med. 2001;29:158–163. - PubMed
    1. Budohoski KP, Czosnyka M, Smielewski P, Kasprowicz M, Helmy A, Bulters D, Pickard JD, Kirkpatrick PJ. Impairment of cerebral autoregulation predicts delayed cerebral ischemia after subarachnoid hemorrhage: a prospective observational study. Stroke. 2012;43:3230–3237. doi: 10.1161/STROKEAHA.112.669788 - DOI - PubMed
    1. Jaeger M, Soehle M, Schuhmann MU, Meixensberger J. Clinical significance of impaired cerebrovascular autoregulation after severe aneurysmal subarachnoid hemorrhage. Stroke. 2012;43:2097–2101. doi: 10.1161/STROKEAHA.112.659888 - DOI - PubMed
    1. Megjhani M, Weiss M, Kwon SB, Ford J, Nametz D, Kastenholz N, Fogel H, Velazquez A, Roh D, Agarwal S, et al. Vector Angle Analysis of Multimodal Neuromonitoring Data for Continuous Prediction of Delayed Cerebral Ischemia. Neurocrit Care. 2022. doi: 10.1007/s12028-022-01481-8 - DOI - PMC - PubMed
    1. Czosnyka M, Smielewski P, Kirkpatrick P, Laing RJ, Menon D, Pickard JD. Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery. 1997;41:11–17; discussion 17–19. doi: 10.1097/00006123-199707000-00005 - DOI - PubMed

Publication types