Emerging nanosensor platforms and machine learning strategies toward rapid, point-of-need small-molecule metabolite detection and monitoring
- PMID: 36320477
- PMCID: PMC9516957
- DOI: 10.1039/d2sc02981b
Emerging nanosensor platforms and machine learning strategies toward rapid, point-of-need small-molecule metabolite detection and monitoring
Abstract
Speedy, point-of-need detection and monitoring of small-molecule metabolites are vital across diverse applications ranging from biomedicine to agri-food and environmental surveillance. Nanomaterial-based sensor (nanosensor) platforms are rapidly emerging as excellent candidates for versatile and ultrasensitive detection owing to their highly configurable optical, electrical and electrochemical properties, fast readout, as well as portability and ease of use. To translate nanosensor technologies for real-world applications, key challenges to overcome include ultralow analyte concentration down to ppb or nM levels, complex sample matrices with numerous interfering species, difficulty in differentiating isomers and structural analogues, as well as complex, multidimensional datasets of high sample variability. In this Perspective, we focus on contemporary and emerging strategies to address the aforementioned challenges and enhance nanosensor detection performance in terms of sensitivity, selectivity and multiplexing capability. We outline 3 main concepts: (1) customization of designer nanosensor platform configurations via chemical- and physical-based modification strategies, (2) development of hybrid techniques including multimodal and hyphenated techniques, and (3) synergistic use of machine learning such as clustering, classification and regression algorithms for data exploration and predictions. These concepts can be further integrated as multifaceted strategies to further boost nanosensor performances. Finally, we present a critical outlook that explores future opportunities toward the design of next-generation nanosensor platforms for rapid, point-of-need detection of various small-molecule metabolites.
This journal is © The Royal Society of Chemistry.
Conflict of interest statement
The authors declare no competing interests.
Figures







Similar articles
-
Ultrasensitive electrochemical biomolecular detection using nanostructured microelectrodes.Acc Chem Res. 2014 Aug 19;47(8):2417-25. doi: 10.1021/ar500130m. Epub 2014 Jun 25. Acc Chem Res. 2014. PMID: 24961296
-
Ensuring food safety by artificial intelligence-enhanced nanosensor arrays.Adv Food Nutr Res. 2024;111:139-178. doi: 10.1016/bs.afnr.2024.06.003. Epub 2024 Jun 18. Adv Food Nutr Res. 2024. PMID: 39103212
-
A nonenzymatic reduced graphene oxide-based nanosensor for parathion.Beilstein J Nanotechnol. 2022 Jul 28;13:730-744. doi: 10.3762/bjnano.13.65. eCollection 2022. Beilstein J Nanotechnol. 2022. PMID: 35957670 Free PMC article.
-
Where Nanosensors Meet Machine Learning: Prospects and Challenges in Detecting Disease X.ACS Nano. 2022 Sep 27;16(9):13279-13293. doi: 10.1021/acsnano.2c05731. Epub 2022 Sep 6. ACS Nano. 2022. PMID: 36067337 Review.
-
Advancements in nanobiosensor technologies for in-vitro diagnostics to point of care testing.Heliyon. 2024 Nov 9;10(22):e40306. doi: 10.1016/j.heliyon.2024.e40306. eCollection 2024 Nov 30. Heliyon. 2024. PMID: 39624329 Free PMC article. Review.
Cited by
-
A 30-Year Review on Nanocomposites: Comprehensive Bibliometric Insights into Microstructural, Electrical, and Mechanical Properties Assisted by Artificial Intelligence.Materials (Basel). 2024 Feb 27;17(5):1088. doi: 10.3390/ma17051088. Materials (Basel). 2024. PMID: 38473560 Free PMC article. Review.
-
Advances in nano sensors for monitoring and optimal performance enhancement in photovoltaic cells.iScience. 2024 Feb 27;27(4):109347. doi: 10.1016/j.isci.2024.109347. eCollection 2024 Apr 19. iScience. 2024. PMID: 38550986 Free PMC article. Review.
-
Expanding the Horizons of Machine Learning in Nanomaterials to Chiral Nanostructures.Adv Mater. 2024 May;36(18):e2308912. doi: 10.1002/adma.202308912. Epub 2024 Feb 3. Adv Mater. 2024. PMID: 38241607 Free PMC article. Review.
-
Plasmonic nanoparticle sensors: current progress, challenges, and future prospects.Nanoscale Horiz. 2024 Nov 19;9(12):2085-2166. doi: 10.1039/d4nh00226a. Nanoscale Horiz. 2024. PMID: 39240539 Free PMC article. Review.
-
Chemistry-informed recommender system to predict optimal molecular receptors in SERS nanosensors.Nat Commun. 2025 Aug 2;16(1):7095. doi: 10.1038/s41467-025-62519-x. Nat Commun. 2025. PMID: 40753173 Free PMC article.
References
-
- Lamichhane S., Sen P., Dickens A. M., Hyötyläinen T. and Orešič M., in Comprehensive Analytical Chemistry, ed. J. Jaumot, C. Bedia and R. Tauler, Elsevier, 2018, vol. 82, pp. 387–413
-
- Ramirez T. Daneshian M. Kamp H. Bois F. Y. Clench M. R. Coen M. Donley B. Fischer S. M. Ekman D. R. Fabian E. Guillou C. Heuer J. Hogberg H. T. Jungnickel H. Keun H. C. Krennrich G. Krupp E. Luch A. Noor F. Peter E. Riefke B. Seymour M. Skinner N. Smirnova L. Verheij E. Wagner S. Hartung T. van Ravenzwaay B. Leist M. ALTEX. 2013;30:209–225. - PMC - PubMed
Publication types
LinkOut - more resources
Full Text Sources