Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Aug 8;13(37):10985-11008.
doi: 10.1039/d2sc01096h. eCollection 2022 Sep 28.

Fluorine in metal-catalyzed asymmetric transformations: the lightest halogen causing a massive effect

Affiliations
Review

Fluorine in metal-catalyzed asymmetric transformations: the lightest halogen causing a massive effect

Samuel Lauzon et al. Chem Sci. .

Abstract

This review aims at providing an overview of the most significant applications of fluorine-containing ligands reported in the literature starting from 2001 until mid-2021. The ligands are classified according to the nature of the donor atoms involved. This review highlights both metal-ligand interactions and the structure-reactivity relationships resulting from the presence of the fluorine atom or fluorine-containing substituents on chiral catalysts.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. Chiral fluorinated CPA ligands 1–4 in metal-catalyzed reactions.
Scheme 1
Scheme 1. [(Ra)-1]3/ScIII-catalyzed fluorination reaction.
Scheme 2
Scheme 2. (Sa)-4/InIII-catalyzed HDA and DA reactions.
Scheme 3
Scheme 3. Cyclopropanation reaction using chiral dirhodium catalysts.
Fig. 2
Fig. 2. TiIV– and MoVI–BINOLate complexes.
Scheme 4
Scheme 4. TiIV-Catalyzed sulfoxidation reaction – (R,R)-hydrobenzoin and (Ra)-BINOL derivatives.
Fig. 3
Fig. 3. TADDOL-like fluorous ligands.
Scheme 5
Scheme 5. Alkylation addition reaction of Ph2Zn to cinnamaldehyde – (Ra)-36vs. (Sa)-37.
Fig. 4
Fig. 4. Chiral RF–BINOL ligands for TiIV-catalyzed reactions in FBS.
Scheme 6
Scheme 6. Simultaneous ethylation reaction of aldehydes in FBS.
Scheme 7
Scheme 7. TiIV-Catalyzed ethylation reaction using α,α′-CnFn+1-diol ligands.
Scheme 8
Scheme 8. 2,2′-Bipyridine-α,α′-CF3-diol/ZnII-mediated ethylation reaction of aldehydes.
Scheme 9
Scheme 9. ZnII-Mediated ethylation reaction of 48 using Schiff's bases bearing an α-CF3-alcohol.
Scheme 10
Scheme 10. Et2Zn alkylation (left) and Reformatsky (right) reactions of benzaldehyde using amino-alcohol derivatives.
Scheme 11
Scheme 11. Postulated TS for the CuII-catalyzed aldol reaction.
Fig. 5
Fig. 5. Fluorinated bis(prolinol)phenol-type of ligands.
Scheme 12
Scheme 12. β-Amido chalcogen/PdII-catalyzed asymmetric allylic alkylation reaction.
Fig. 6
Fig. 6. Salen ligands bearing fluorinated motifs.
Scheme 13
Scheme 13. PhIO-assisted epoxidation reaction using chiral FeIII complexes.
Scheme 14
Scheme 14. Various applications of chiral RhII2 catalysts in diazo chemistry.
Scheme 15
Scheme 15. [2 + 1]-Cycloaddition reaction catalyzed by the [(R,R)-138]2/RhII2 complex.
Fig. 7
Fig. 7. Fluorinated motifs incorporated into DACH-type diimine ligands.
Scheme 16
Scheme 16. CuII-Catalyzed Diels–Alder reaction – diimine ligand screening.
Scheme 17
Scheme 17. CuI-Catalyzed carbene insertion reaction into the Si–H bond – chiral diimine possessing various bite angles.
Scheme 18
Scheme 18. Ni0-Catalyzed C-alkylation reaction – optimization of the chiral diamine ligand.
Scheme 19
Scheme 19. NiII complexes employed in addition-type reactions.
Fig. 8
Fig. 8. Perfluorinated motifs in chiral diamine- and diimine-based ligands.
Scheme 20
Scheme 20. Stereospecific preparation of C2-symmetric fluorinated DPEN ligands.
Scheme 21
Scheme 21. TiIV-Catalyzed epoxidation reaction of geraniol.
Fig. 9
Fig. 9. F-containing tosylated-(S,S)-DPEN ligands in RuII complexes.
Scheme 22
Scheme 22. RhIII-Catalyzed ATH reaction of 201 into (R)-202.
Scheme 23
Scheme 23. Friedel–Crafts alkylation reaction using chiral PHEBIM ligands.
Scheme 24
Scheme 24. CuI-Catalyzed allenylation reaction and the postulated TS.
Scheme 25
Scheme 25. MgII-Catalyzed dynamic kinetic asymmetric [3 + 2] cycloaddition reaction.
Fig. 10
Fig. 10. Fluorous chiral bis(oxazoline)-derived ligands.
Fig. 11
Fig. 11. Perfluoroalkyl motifs for chiral BOX ligands.
Scheme 26
Scheme 26. Ullman-like coupling reaction for the synthesis of PHOX ligands.
Scheme 27
Scheme 27. Postulated TS for the synthesis of isoflavone (R)-246.
Scheme 28
Scheme 28. (S)-247/Pd0-Catalyzed vinylborylation of alkenes.
Scheme 29
Scheme 29. PdII-Catalyzed allylic alkylation reaction using (S)-256 and (S)-257.
Scheme 30
Scheme 30. Asymmetric cyclopropanation reaction catalyzed by a CF3-containing PNNP/RuII complex.
Fig. 12
Fig. 12. Library of amine–phosphine ligands comprising the TF-BIPHAM scaffold.
Scheme 31
Scheme 31. Postulated TS for the attack of the azomethine ylide intermediate.
Scheme 32
Scheme 32. Two-step synthesis of 2-aminoalkyl furan via the alkynylation/cyclization reaction sequence.
Fig. 13
Fig. 13. Chiral ferrocenyl-derived ligands containing the 3,5-(CF3)2-C6H3 group.
Fig. 14
Fig. 14. Fluorinated JosiPhos- and WalPhos-type of ligands.
Scheme 33
Scheme 33. Hydrogenation reaction using electronically modified WalPhos ligands.
Scheme 34
Scheme 34. PdII-Catalyzed carbonylation reaction of styrene 20.
Fig. 15
Fig. 15. F-Containing MeO-BIPHEP derivatives.
Fig. 16
Fig. 16. Classes of axially chiral bisphosphine ligands comprising the 1,1′-biphenyl system.
Fig. 17
Fig. 17. Fluorous BINAPs employed in FBS.
Scheme 35
Scheme 35. (Ra,Sa)-330/RhI-Catalyzed hydroformylation reaction of alkenes.
Fig. 18
Fig. 18. Selected examples of chiral phosphoramidite ligands.
Fig. 19
Fig. 19. Miscellaneous mono- and bidentate P-ligands containing fluorine atoms.
Scheme 36
Scheme 36. (Ra)-349/PdII-catalyzed alkylation reaction of rac-114.
Scheme 37
Scheme 37. AuI-Catalyzed cyclization of 359 into (R)-360.
Scheme 38
Scheme 38. NHC–CuI-Catalyzed AAAr reaction of aliphatic allylic bromides with phenyl magnesium bromide.
Scheme 39
Scheme 39. Fluorination reaction via the optimized TS.
Fig. 20
Fig. 20. Chiral tfb-substituted ligands and their complexation modes with metals.
None
From left to right: Samuel Lauzon and Thierry Ollevier

Similar articles

Cited by

References

    1. Seppelt K., The Curious World of Fluorinated Molecules: Molecules Containing Fluorine, Elsevier, Amsterdam, 2021
    2. Tressaud A., Fluorine: A Paradoxal Element, Elsevier, Amsterdam, 2019
    3. Kirsch P., Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications, Weinheim, 2013
    1. O'Hagan D. Harper D. B. J. Fluorine Chem. 1999;100:127–133. doi: 10.1016/S0022-1139(99)00201-8. - DOI
    1. Mei H. Han J. Fustero S. Medio-Simon M. Sedgwick D. M. Santi C. Ruzziconi R. Soloshonok V. A. Chem.–Eur. J. 2019;25:11797–11819. doi: 10.1002/chem.201901840. - DOI - PubMed
    2. Zhou Y. Wang J. Gu Z. Wang S. Zhu W. Aceña J. L. Soloshonok V. A. Izawa K. Liu H. Chem. Rev. 2016;116:422–518. doi: 10.1021/acs.chemrev.5b00392. - DOI - PubMed
    3. Wang J. Sánchez-Roselló M. Aceña J. L. del Pozo C. Sorochinsky A. E. Fustero S. Soloshonok V. A. Liu H. Chem. Rev. 2014;114:2432–2506. doi: 10.1021/cr4002879. - DOI - PubMed
    1. Meanwell N. A. J. Med. Chem. 2018;61:5822–5880. doi: 10.1021/acs.jmedchem.7b01788. - DOI - PubMed
    2. Gillis E. P. Eastman K. J. Hill M. D. Donnelly D. J. Meanwell N. A. J. Med. Chem. 2015;58:8315–8359. doi: 10.1021/acs.jmedchem.5b00258. - DOI - PubMed
    3. Hagmann W. K. J. Med. Chem. 2008;51:4359–4369. doi: 10.1021/jm800219f. - DOI - PubMed
    4. Purser S. Moore P. R. Swallow S. Gouverneur V. Chem. Soc. Rev. 2008;37:320–330. doi: 10.1039/B610213C. - DOI - PubMed
    5. Müller K. Faeh C. Diederich F. Science. 2007;317:1881–1886. doi: 10.1126/science.1131943. - DOI - PubMed
    1. O'Hagan D. Chem. Soc. Rev. 2008;37:308–319. doi: 10.1039/B711844A. - DOI - PubMed