Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Aug 26;13(38):11427-11432.
doi: 10.1039/d2sc02827a. eCollection 2022 Oct 5.

A base-catalyzed approach for the anti-Markovnikov hydration of styrene derivatives

Affiliations

A base-catalyzed approach for the anti-Markovnikov hydration of styrene derivatives

Spencer P Pajk et al. Chem Sci. .

Abstract

The base-catalyzed addition of 1-cyclopropylethanol to styrene derivatives with an acidic reaction workup enables anti-Markovnikov hydration. The use of either catalytic organic superbase or crown ether-ligated inorganic base permits hydration of a wide variety of styrene derivatives, including electron-deficient, ortho-substituted and heteroaryl variants. This protocol complements alternative routes to terminal alcohols that rely on stoichiometric reduction and oxidation processes. The utility of this method is demonstrated through multigram scale reactions and its use in a two-step hydration/cyclization process of ortho-halogenated styrenes to prepare 2,3-dihydrobenzofuran derivatives.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. Examples of the importance of β-aryl substituted alcohols.
Fig. 2
Fig. 2. Overview of a base-catalyzed approach to anti-Markovnikov styrene hydration.
Scheme 1
Scheme 1. Optimization studies for (a) superbase-catalyzed alcohol addition and (b) ether hydrolysis. a Yields determined by 1H NMR spectroscopy. b Isolated yield of purified product.
Scheme 2
Scheme 2. Comparison of base-catalyzed hydration to hydroboration/oxidation methods. a Yields and regioselectivities determined by 1H NMR spectroscopy of the crude reaction mixture; yields from Table 1 represent isolated yields. b Yields are of purified alcohol product. c 5 equiv. of 4 used.
Scheme 3
Scheme 3. Examples of preparative scale anti-Markovnikov hydration reactions; yields are of isolated alcohol product.
Scheme 4
Scheme 4. Utility of Table 1 alcohol products for dihydrobenzofuran derivative synthesis; yields are of isolated product from the cyclization step using given conditions. a CuI (10 mol%), 8-quinolinol (15 mol%), Cs2CO3 (1.5 equiv.), PhMe, 110 °C, 16 h. b NaH (1.5 equiv.), THF, 70 °C, 16 h. c Pd(OAc)2 (3 mol%), JohnPhos (4 mol%), Cs2CO3 (1.5 equiv.), PhMe, 80 °C, 22 h.

References

    1. For references that discuss compounds shown in Fig. 1a, see:

    2. Manzetti S. Zhang J. van der Spoel D. Biochem. 2014;53:821–835. - PubMed
    3. Guo R.-H. Zhang Q. Ma Y.-B. Luo J. Geng C.-A. Wang L.-J. Zhang X.-M. Zhou J. Jiang Z.-Y. Chen J.-J. Eur. J. Med. Chem. 2011;46:307–319. - PubMed
    4. Dexter H. R. Allen E. Williams D. M. Tetrahedron Lett. 2018;59:4323–4325.
    1. For references that discuss compounds shown in Fig. 1b, see:

    2. Chen H. Chen Y. Zou Q. Yuan L. Org. Process Res. Dev. 2013;17:714–717.
    3. Madivada L. R. Anumala R. R. Gilla G. Alla S. Charagondla K. Kagga M. Bhattacharya A. Bandichhor R. Org. Process Res. Dev. 2009;13:1190–1194.
    1. For references that discuss compounds shown in Fig. 1c, see:

    2. Xie J. Yang F. Zhang M. Lam C. Qiao Y. Xiao J. Zhang D. Ge Y. Fu L. Xie D. Bioorg. Med. Chem. Lett. 2017;27:131–134. - PubMed
    3. Sanderson J. T. Clabault H. Patton C. Lassalle-Claux G. Jean-François J. Paré A. F. Hébert M. J. G. Surette M. E. Touaibia M. Bioorg. Med. Chem. 2013;21:7182–7193. - PubMed
    4. Cleghorn L. A. T. Ray P. C. Odingo J. Kumar A. Wescott H. Korkegian A. Masquelin T. Lopez Moure A. Wilson C. Davis S. Huggett M. Turner P. Smith A. Epemolu O. Zuccotto F. Riley J. Scullion P. Shishikura Y. Ferguson L. Rullas J. Guijarro L. Read K. D. Green S. R. Hipskind P. Parish T. Wyatt P. G. J. Med. Chem. 2018;61:6592–6608. - PMC - PubMed
    5. Jeffries D. E. Witt J. O. McCollum A. L. Temple K. J. Hurtado M. A. Harp J. M. Blobaum A. L. Lindsley C. W. Hopkins C. R. Bioorg. Med. Chem. Lett. 2016;26:5757–5764. - PubMed
    1. Smith M. B., March's Advanced Organic Chemistry, 7th edn, Wiley, New York, 2013, pp. 1497–1519
    2. Werkmeister S. Junge K. Beller M. Org. Process Res. Dev. 2014;18:289–302.
    3. Pritchard J. Filonenko G. A. van Putten R. Hensen E. J. M. Pidko E. A. Chem. Soc. Rev. 2015;44:3808–3833. - PubMed
    1. For reviews on uncatalyzed hydroboration, see:

    2. Brown H. C., Hydroboration, W. A. Benjamin, Inc., New York, 1962
    3. Dhilon R. S., Hydroboration and Organic Synthesis, Springer, Berlin, Germany, 2007
    4. Brown H. C. Tetrahedron. 1961;12:117–138.