Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Aug 8;13(36):10773-10778.
doi: 10.1039/d2sc02637f. eCollection 2022 Sep 21.

Molecular nanoribbon gels

Affiliations

Molecular nanoribbon gels

Marta Martínez-Abadía et al. Chem Sci. .

Abstract

Herein, we show that twisted molecular nanoribbons with as many as 322 atoms in the aromatic core are efficient gelators capable of self-assembling into ordered π-gels with morphologies and sol-gel transitions that vary with the length of the nanoribbon. In addition, the nanoribbon gels show a red fluorescence and also pseudoconductivity values in the same range as current state-of-the-art π-gels.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Fig. 1
Fig. 1. Chemical structures of NR-13, NR-33 and NR-53. The chemical formula corresponds only to the aromatic core atoms highlighted in grey.
Fig. 2
Fig. 2. Different front and side views of a NR-53 model without solubilizing groups illustrating its twisted structure.
Fig. 3
Fig. 3. SEM images of the xerogels, in 1-octanol, of (a) NR-13 (3% w/w), (b) NR-33 (1.3% w/w), and (c) NR-53 (1.3% w/w). TEM images of the aggregates in 1-octanol of (d) NR-13 (0.07% w/w), (e) NR-33 (0.1% w/w), and (f) NR-53 (0.1% w/w).
Fig. 4
Fig. 4. X-Ray powder diffraction pattern from the xerogels obtained from the 1-octanol gels of (a) NR-13 (3.0% w/w); (b) NR-33 (1.3% w/w); and (c) NR-53 (1.3% w/w).
Fig. 5
Fig. 5. Rheological characterization. Frequency sweep test at T = 20 °C of NR-13 (3% w/w), NR-33 (1.3% w/w), and NR-53 (1.3% w/w).
Fig. 6
Fig. 6. Fluorescence spectra of a diluted solution in 1-octanol, sol state and xerogel of (a) NR-13; (b) NR-33; and (c) NR-53. Gelation test in 1-octanol, under room light (left) and UV light (right), of: (d) NR-13 (3% w/w); (e) NR-33 (1.3% w/w); and (f) NR-53 (1.3% w/w).
Fig. 7
Fig. 7. Conductivity transients of the xerogels of NR-13, NR-33 and NR-53 upon excitation at 355 nm, 9.1 × 1015 photons per cm2 per pulse.

References

    1. Yao Y. F. Zhang L. Orgiu E. Samori P. Adv. Mater. 2019;31:1900599. doi: 10.1002/adma.201900599. - DOI - PubMed
    2. Lu F. Neal E. A. Nakanishi T. Acc. Chem. Res. 2019;52:1834–1843. doi: 10.1021/acs.accounts.9b00217. - DOI - PubMed
    3. Jones C. D. Steed J. W. Chem. Soc. Rev. 2016;45:6546–6596. doi: 10.1039/C6CS00435K. - DOI - PubMed
    4. Ghosh S. Praveen V. K. Ajayaghosh A. Annu. Rev. Mater. Res. 2016;46:235–262. doi: 10.1146/annurev-matsci-070115-031557. - DOI
    5. Babu S. S. Praveen V. K. Ajayaghosh A. Chem. Rev. 2014;114:1973–2129. doi: 10.1021/cr400195e. - DOI - PubMed
    6. Babu S. S. Prasanthkumar S. Ajayaghosh A. Angew. Chem., Int. Ed. 2012;51:1766–1776. doi: 10.1002/anie.201106767. - DOI - PubMed
    1. Hong J.-P. Um M.-C. Nam S.-R. Hong J.-I. Lee S. Chem. Commun. 2009:310–312. doi: 10.1039/B816030A. - DOI - PubMed
    2. Guan Y.-S. Qin Y. Sun Y. Chen J. Xu W. Zhu D. Chem. Commun. 2016;52:4648–4651. doi: 10.1039/C6CC01300G. - DOI - PubMed
    3. Sagade A. A. Rao K. V. Mogera U. George S. J. Datta A. Kulkarni G. U. Adv. Mater. 2013;25:559–564. doi: 10.1002/adma.201203926. - DOI - PubMed
    4. Guan Y.-S. Qin Y. Sun Y. Wang C. Xu W. Zhu D. Chem. Commun. 2015;51:12182–12184. doi: 10.1039/C5CC04711K. - DOI - PubMed
    5. Prasanthkumar S. Saeki A. Seki S. Ajayaghosh A. J. Am. Chem. Soc. 2010;132:8866–8867. doi: 10.1021/ja103685j. - DOI - PubMed
    6. Hollamby M. J. Karny M. Bomans P. H. H. Sommerdjik N. A. J. M. Saeki A. Seki S. Minamikawa H. Grillo I. Pauw B. R. Brown P. Eastoe J. Möhwald H. Nakanishi T. Nat. Chem. 2014;6:690. doi: 10.1038/nchem.1977. - DOI - PubMed
    7. López-Andarias J. Rodriguez M. J. Atienza C. López J. L. Mikie T. Casado S. Seki S. Carrascosa J. L. Martín N. J. Am. Chem. Soc. 2015;137:893–897. doi: 10.1021/ja510946c. - DOI - PubMed
    8. Nair V. S. Mukhopadhyay R. D. Saeki A. Seki S. Ajayaghosh A. Sci. Adv. 2016;2:e1600142. doi: 10.1126/sciadv.1600142. - DOI - PMC - PubMed
    9. Martín C. Kennes K. Van der Auweraer M. Hofkens J. de Miguel G. García-Frutos E. M. Adv. Funct. Mater. 2017;27:1702176. doi: 10.1002/adfm.201702176. - DOI
    10. Draper E. R. Walsh J. J. McDonald T. O. Zwijnenburg M. A. Cameron P. J. Cowan A. J. Adams D. J. J. Mater. Chem. C. 2014;2:5570–5575. doi: 10.1039/C4TC00744A. - DOI
    11. Tsai W.-W. Tevis I. D. Tayi A. S. Cui H. Stupp S. I. J. Phys. Chem. B. 2010;114:14778–14786. doi: 10.1021/jp105227p. - DOI - PubMed
    12. Stone D. A. Tayi A. S. Goldberger J. E. Palmer L. C. Stupp S. I. Chem. Commun. 2011;47:5702–5704. doi: 10.1039/C1CC10809C. - DOI - PubMed
    13. Xu J. Wang Y. Shan H. Lin Y. Chen Q. Roy V. A. L. Xu Z. ACS Appl. Mater. Interfaces. 2016;8:18991–18997. doi: 10.1021/acsami.6b04817. - DOI - PubMed
    14. Zhang L. Li S. Squillaci M. A. Zhong X. Yao Y. Orgiu E. Samorì P. J. Am. Chem. Soc. 2017;139:14406–14411. doi: 10.1021/jacs.7b04347. - DOI - PubMed
    15. Besar K. Ardoña H. A. M. Tovar J. D. Katz H. E. ACS Nano. 2015;9:12401–12409. doi: 10.1021/acsnano.5b05752. - DOI - PubMed
    16. Martinez-Abadia M. Antonicelli G. Saeki A. Mateo-Alonso A. Angew. Chem., Int. Ed. 2018;57:8209–8213. doi: 10.1002/anie.201804453. - DOI - PubMed
    1. Guo X. Yuan Z. Zhu Y. Li Z. Huang R. Xia Z. Zhang W. Li Y. Wang J. Angew. Chem., Int. Ed. 2019;58:16966–16972. doi: 10.1002/anie.201907972. - DOI - PubMed
    2. Zhu Y. Xia Z. Cai Z. Yuan Z. Jiang N. Li T. Wang Y. Guo X. Li Z. Ma S. Zhong D. Li Y. Wang J. J. Am. Chem. Soc. 2018;140:4222–4226. doi: 10.1021/jacs.8b01447. - DOI - PubMed
    3. Ma S. Gu J. Lin C. Luo Z. Zhu Y. Wang J. J. Am. Chem. Soc. 2020;142:16887–16893. doi: 10.1021/jacs.0c08555. - DOI - PubMed
    4. Cruz C. M. Márquez I. R. Castro-Fernández S. Cuerva J. M. Maçôas E. Campaña A. G. Angew. Chem., Int. Ed. 2019;58:8068–8072. doi: 10.1002/anie.201902529. - DOI - PubMed
    5. Cortizo-Lacalle D. Mora-Fuentes J. P. Strutyński K. Saeki A. Melle-Franco M. Mateo-Alonso A. Angew. Chem., Int. Ed. 2018;57:703–708. doi: 10.1002/anie.201710467. - DOI - PMC - PubMed
    6. Yan X. Cui X. Li L.-s. J. Am. Chem. Soc. 2010;132:5944–5945. doi: 10.1021/ja1009376. - DOI - PubMed
    7. Chen Y. Lin C. Luo Z. Yin Z. Shi H. Zhu Y. Wang J. Angew. Chem., Int. Ed. 2021;60:7796–7801. doi: 10.1002/anie.202014621. - DOI - PubMed
    8. Wang Y. Yin Z. Zhu Y. Gu J. Li Y. Wang J. Angew. Chem., Int. Ed. 2019;58:587–591. doi: 10.1002/anie.201811706. - DOI - PubMed
    9. Mora-Fuentes J. P. Riaño A. Cortizo-Lacalle D. Saeki A. Melle-Franco M. Mateo-Alonso A. Angew. Chem., Int. Ed. 2019;58:552–556. doi: 10.1002/anie.201811015. - DOI - PubMed
    10. Beser U. Kastler M. Maghsoumi A. Wagner M. Castiglioni C. Tommasini M. Narita A. Feng X. Müllen K. J. Am. Chem. Soc. 2016;138:4322–4325. doi: 10.1021/jacs.6b01181. - DOI - PubMed
    11. Simpson C. D. Brand J. D. Berresheim A. J. Przybilla L. Räder H. J. Müllen K. Chem.–Eur. J. 2002;8:1424–1429. doi: 10.1002/1521-3765(20020315)8:6<1424::AID-CHEM1424>3.0.CO;2-Z. - DOI - PubMed
    12. Tan Y.-Z. Yang B. Parvez K. Narita A. Osella S. Beljonne D. Feng X. Müllen K. Nat. Commun. 2013;4:2646. doi: 10.1038/ncomms3646. - DOI - PMC - PubMed
    13. Zhu Y. Guo X. Li Y. Wang J. J. Am. Chem. Soc. 2019;141:5511–5517. doi: 10.1021/jacs.9b01266. - DOI - PubMed
    14. Dubey R. K. Melle-Franco M. Mateo-Alonso A. J. Am. Chem. Soc. 2021;143:6593–6600. doi: 10.1021/jacs.1c01849. - DOI - PubMed
    15. Hernández-Culebras F. Melle-Franco M. Mateo-Alonso A. Angew. Chem., Int. Ed. 2022:e202205018. - PMC - PubMed
    1. Ito S. Herwig P. T. Böhme T. Rabe J. P. Rettig W. Müllen K. J. Am. Chem. Soc. 2000;122:7698–7706. doi: 10.1021/ja000850e. - DOI
    2. Zhi L. Wu J. Müllen K. Org. Lett. 2005;7:5761–5764. doi: 10.1021/ol052201j. - DOI - PubMed
    3. Kim H.-S. Lee J.-H. Kim T.-H. Okabe S. Shibayama M. Choi S.-M. J. Phys. Chem. B. 2011;115:7314–7320. doi: 10.1021/jp200882n. - DOI - PubMed
    4. Dou X. Pisula W. Wu J. Bodwell G. J. Müllen K. Chem.–Eur. J. 2008;14:240–249. doi: 10.1002/chem.200700921. - DOI - PubMed
    5. Hill J. P. Jin W. Kosaka A. Fukushima T. Ichihara H. Shimomura T. Ito K. Hashizume T. Ishii N. Aida T. Science. 2004;304:1481–1483. doi: 10.1126/science.1097789. - DOI - PubMed
    6. Jin W. Fukushima T. Niki M. Kosaka A. Ishii N. Aida T. Proc. Natl. Acad. Sci. U.S.A. 2005;102:10801–10806. doi: 10.1073/pnas.0500852102. - DOI - PMC - PubMed
    7. Jin W. Yamamoto Y. Fukushima T. Ishii N. Kim J. Kato K. Takata M. Aida T. J. Am. Chem. Soc. 2008;130:9434–9440. doi: 10.1021/ja801179e. - DOI - PubMed
    8. Rao K. V. Jayaramulu K. Maji T. K. George S. J. Angew. Chem., Int. Ed. 2010;49:4218–4222. doi: 10.1002/anie.201000527. - DOI - PubMed
    9. Rao K. V. Datta K. K. R. Eswaramoorthy M. George S. J. Angew. Chem., Int. Ed. 2011;50:1179–1184. doi: 10.1002/anie.201006270. - DOI - PubMed
    10. Jain A. Rao K. V. Kulkarni C. George A. George S. J. Chem. Commun. 2012;48:1467–1469. doi: 10.1039/C1CC14990C. - DOI - PubMed
    1. Kato K. Takaba K. Maki-Yonekura S. Mitoma N. Nakanishi Y. Nishihara T. Hatakeyama T. Kawada T. Hijikata Y. Pirillo J. Scott L. T. Yonekura K. Segawa Y. Itami K. J. Am. Chem. Soc. 2021;143:5465–5469. doi: 10.1021/jacs.1c00863. - DOI - PubMed