Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Aug 22;13(36):10743-10751.
doi: 10.1039/d2sc03720c. eCollection 2022 Sep 21.

Unified synthesis of multiply arylated alkanes by catalytic deoxygenative transformation of diarylketones

Affiliations

Unified synthesis of multiply arylated alkanes by catalytic deoxygenative transformation of diarylketones

Miki B Kurosawa et al. Chem Sci. .

Abstract

A deoxygenative transformation of diarylketones leading to multiply arylated alkanes was developed. Diarylketones were reacted with diphenylphosphine oxide resulting in a phospha-Brook rearrangement, followed by palladium-catalyzed cross-couplings or a Friedel-Crafts type alkylation to afford the corresponding multiply arylated alkanes. A variety of diarylketones can be converted to multiply arylated alkanes such as diarylmethanes, tetraarylethanes, and triarylmethanes by reduction, dimerization, and arylation in one pot. Furthermore, a one-pot conversion from arylcarboxylic acids to diarylmethanes and tetraarylethanes, and a synthesis of tetraarylmethane and triphenylethane using sequential coupling reactions are also presented.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. (A) Multiply arylated alkanes in pharmaceuticals, natural products, and organic materials. (B) State-of-the-art synthesis of multiply arylated alkanes. (C) Deoxygenative C–P bond formation of aromatic esters. (D) Deoxygenative transformation of diarylketones.
Fig. 2
Fig. 2. Substrate scope Conditions; a1 (0.40 mmol), diphenylphosphine oxide (1.5 equiv.), PdCl2 (5.0 mol%), PPh3 (20 mol%), HCO2Na (2.0 equiv.), Cs2CO3 (2.0 equiv.), DMSO (1.0 mL), 150 °C, 1 h. b1 (0.40 mmol), diphenylphosphine oxide (1.5 equiv.), PdCl2 (5.0 mol%), PPh3 (20 mol%), HCO2Na (2.0 equiv.), Cs2CO3 (0.40 equiv.), DME (1.0 mL), 150 °C, 12 h. c Yield was determined by 1H NMR analysis due to the volatile nature of 2A. d PdCl2 (10 mol%), PPh3 (40 mol%) were used. e Pn-Bu3 (20 mol%), K2CO3 (2.0 equiv.), MeCN, 12 h. f 6.0 mmol scale. g Isolated as an acetamide by treating with Ac2O. h 20 mol% MePPh2, K2CO3 (2.0 equiv.), MeCN, 12 h.
Fig. 3
Fig. 3. (A) Phosphinate 4A from benzophenone (1). (B) Diphenylmethane (2A) from phosphinate 4A. (C) Tetraphenylethane 3A from phosphinate 4A. (D) Crossover reaction. Numbers in the parentheses are yields of 3A. (E) Deuterium labeling experiments. (F) Standard conditions with TEMPO as a radical scavenger. (G) With phosphite instead of phosphine oxide.
Fig. 4
Fig. 4. Synthesis of triarylmethanes. Conditions: a diarylketone (0.40 mmol), diphenylphosphine oxide (1.5 equiv.), Cs2CO3 (0.40 equiv.), DME (2.0 mL), 80 °C, 3 h; then arene (1.0 mL), TfOH (2.0 equiv.), RT, 2 min. b Diarylketone (0.40 mmol), diphenylphosphine oxide (1.2 equiv.), Cs2CO3 (2.0 equiv.), 1,4-dioxane (2.0 mL), 150 °C, 1 h; then arylboronic acid (1.5 equiv.), Pd(OAc)2 (10 mol%), P (p-tolyl)3 (40 mol%), 150 °C, 1 h. c The ratio of isomers (para/ortho-position (6A) or C2/C3 position (6B)) is shown in parentheses.
Fig. 5
Fig. 5. Synthetic utility and applications of deoxygenative transformation of diarylketones. (A) One-pot synthesis from aryl carboxylic acid. (B) Allylation of diarylketone. (C) Intramolecular dimerization/oxidation. (D) Diarylmethane synthesis from arylaldehyde. (E) Triarylethane synthesis from diarylketone. (F) Tetraarylmethane synthesis from diarylketone.

Similar articles

Cited by

References

    1. Ohtake Y. Sato T. Kobayashi T. Nishimoto M. Taka N. Takano K. Yamamoto K. Ohmori M. Yamaguchi M. Takami K. Yeu S.-Y. Ahn K.-H. Matsuoka H. Morikawa K. Suzuki M. Hagita H. Ozawa K. Yamaguchi K. Kato M. Ikeda S. J. Med. Chem. 2012;55:7828–7840. doi: 10.1021/jm300884k. - DOI - PubMed
    1. Zhou B. Liu D. X. Yuan X. J. Li J. Y. Xu Y. C. Li J. Li Y. Yue J. M. Research. 2018;2018:2674182. doi: 10.1155/2018/2674182. - DOI - PMC - PubMed
    1. Palchaudhuri R. Lambrecht M. J. Botham R. C. Partlow K. C. Van Ham T. J. Putt K. S. Nguyen L. T. Kim S.-H. Peterson R. T. Fan T. M. Cell Rep. 2015;13:2027–2036. doi: 10.1016/j.celrep.2015.10.042. - DOI - PMC - PubMed
    1. Schneider K. S. Groß C. J. Dreier R. F. Saller B. S. Mishra R. Gorka O. Heilig R. Meunier E. Dick M. S. Ćiković T. Sodenkamp J. Médard G. Naumann R. Ruland J. Kuster B. Broz P. Groß O. Cell Rep. 2017;21:3846–3859. doi: 10.1016/j.celrep.2017.12.018. - DOI - PMC - PubMed
    1. Alexander R. P. Warrellow G. J. Eaton M. A. W. Boyd E. C. Head J. C. Porter J. R. Brown J. A. Reuberson J. T. Hutchinson B. Turner P. Boyce B. Barnes D. Mason B. Cannell A. Taylor R. J. Zomaya A. Millican A. Leonard J. Morphy R. Wales M. Perry M. Allen R. A. Gozzard N. Hughes B. Higgs G. Bioorg. Med. Chem. Lett. 2002;12:1451–1456. doi: 10.1016/S0960-894X(02)00202-0. - DOI - PubMed