Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Nov 16;14(45):51519-51530.
doi: 10.1021/acsami.2c15131. Epub 2022 Nov 2.

Liquid Metal-Templated Tin-Doped Tellurium Films for Flexible Asymmetric Pseudocapacitors

Affiliations

Liquid Metal-Templated Tin-Doped Tellurium Films for Flexible Asymmetric Pseudocapacitors

Maedehsadat Mousavi et al. ACS Appl Mater Interfaces. .

Abstract

Liquid metals can be surface activated to generate a controlled galvanic potential by immersing them in aqueous solutions. This creates energized liquid-liquid interfaces that can promote interfacial chemical reactions. Here we utilize this interfacial phenomenon of liquid metals to deposit thin films of tin-doped tellurium onto rigid and flexible substrates. This is accomplished by exposing liquid metals to a precursor solution of Sn2+ and HTeO2+ ions. The ability to paint liquid metals onto substrates enables us to fabricate supercapacitor electrodes of liquid metal films with an intimately connected surface layer of tin-doped tellurium. The tin-doped tellurium exhibits a pseudocapacitive behavior in 1.0 M Na2SO4 electrolyte and records a specific capacitance of 184.06 F·g-1 (5.74 mF·cm-2) at a scan rate of 10 mV·s-1. Flexible supercapacitor electrodes are also fabricated by painting liquid metals onto polypropylene sheets and subsequently depositing tin-doped tellurium thin films. These flexible electrodes show outstanding mechanical stability even when experiencing a complete 180° bend as well as exhibit high power and energy densities of 160 W·cm-3 and 31 mWh·cm-3, respectively. Overall, this study demonstrates the attractive features of liquid metals in creating energy storage devices and exemplifies their use as media for synthesizing electrochemically active materials.

Keywords: energy storage; gallium; interfaces; liquid metals; supercapacitors; tellurium.

PubMed Disclaimer