Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Dec;43(6):762-770.
doi: 10.1080/13816810.2022.2141797. Epub 2022 Nov 3.

Targeted long-read sequencing allows for rapid identification of pathogenic disease-causing variants in retinoblastoma

Affiliations

Targeted long-read sequencing allows for rapid identification of pathogenic disease-causing variants in retinoblastoma

Kenji Nakamichi et al. Ophthalmic Genet. 2022 Dec.

Abstract

Background: Identification of disease-causing variants of the retinoblastoma gene (RB1), the predominant cause of retinoblastoma, is challenging. Targeted long-read genome sequencing offers a novel approach to resolve the diverse range of pathogenic variants in RB1 and provides haplotype information rapidly.

Materials and methods: Genomic DNA was isolated from a venipuncture blood draw of a retinoblastoma patient. Whole genome sequencing (WGS) was carried out using the short-read Ilumina platform. WGS and targeted sequencing of RB1 was accomplished using the long-read Oxford Nanopore Technologies (ONT) platform. Deep-learning frameworks allowed haplotagging, variant calling, and variant annotation of both short- and long-read data.

Results: Targeted long-read sequencing of the RB1 gene allowed for enhanced depth of read coverage for discovery of rare variants and haplotype analysis. A duplication leading to a frameshift and early termination in RB1 was identified as the most deleterious variant by all sequencing methods, with long-read technology providing additional information of methylation signal and haplotype information. More importantly, there was greater than 98% concordance of RB1 variants identified between short-read and targeted long-read sequencing modalities.

Conclusions: Targeted long-read technology allows for focused sequencing effort for variant discovery. Application of this for the first time in a retinoblastoma patient allowed haplotagged variant identification and demonstrated excellent concordance with benchmark short-read sequencing. The added benefit of targeted long-read sequencing to resolve disease-causing genomic variation in RB1 rapidly from a blood draw will provide a more definitive diagnosis of heritable RB and guide management decisions for patients and their families.

Keywords: RB1; adaptive sampling; haplotyping; long-read sequencing; methylation; retinoblastoma; targeted sequencing.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources