Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Dec:136:105529.
doi: 10.1016/j.jmbbm.2022.105529. Epub 2022 Oct 23.

Hierarchical modeling of elastic moduli of equine hoof wall

Affiliations

Hierarchical modeling of elastic moduli of equine hoof wall

Cheng-Shen Andrew Shiang et al. J Mech Behav Biomed Mater. 2022 Dec.

Abstract

This study predicts analytically effective elastic moduli of substructures within an equine hoof wall. The hoof wall is represented as a composite material with a hierarchical structure comprised of a sequence of length scales. A bottom-up approach is employed. Thus, the outputs from a lower spatial scale serve as the inputs for the following scale. The models include the Halpin-Tsai model, composite cylinders model, a sutured interface model, and classical laminate theory. The length scales span macroscale, mesoscale, sub-mesoscale, microscale, sub-microscale, and nanoscale. The macroscale represents the hoof wall, consisting of tubules within a matrix at the mesoscale. At the sub-mesoscale, a single hollow tubule is reinforced by a tubule wall made of lamellae; the surrounding intertubular material also has a lamellar structure. The lamellae contain sutured and layered cells at the microscale. A single cell is made of crystalline macrofibrils arranged in an amorphous matrix at the sub-microscale. A macrofibril contains aligned crystalline rod-like intermediate filaments at the nanoscale. Experimentally obtained parameters are used in the modeling as inputs for geometry and nanoscale properties. The predicted properties of the hoof wall material agree with experimental measurements at the mesoscale and macroscale. We observe that the hierarchical structure of the hoof wall leads to a decrease in the elastic modulus with increasing scale, from the nanoscale to the macroscale. Such behavior is an intrinsic characteristic of hierarchical biological materials. This study can serve as a framework for designing impact-resistant hoof-inspired materials and structures.

Keywords: Elastic moduli; Equine hoof wall; Keratin; Modeling; Structural hierarchy.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Publication types

LinkOut - more resources