Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Nov:133:102408.
doi: 10.1016/j.artmed.2022.102408. Epub 2022 Sep 26.

Temporal deep learning framework for retinopathy prediction in patients with type 1 diabetes

Affiliations
Review

Temporal deep learning framework for retinopathy prediction in patients with type 1 diabetes

Sara Rabhi et al. Artif Intell Med. 2022 Nov.

Abstract

The adoption of electronic health records in hospitals has ensured the availability of large datasets that can be used to predict medical complications. The trajectories of patients in real-world settings are highly variable, making longitudinal data modeling challenging. In recent years, significant progress has been made in the study of deep learning models applied to time series; however, the application of these models to irregular medical time series (IMTS) remains limited. To address this issue, we developed a generic deep-learning-based framework for modeling IMTS that facilitates the comparative studies of sequential neural networks (transformers and long short-term memory) and irregular time representation techniques. A validation study to predict retinopathy complications was conducted on 1207 patients with type 1 diabetes in a French database using their historical glycosylated hemoglobin measurements, without any data aggregation or imputation. The transformer-based model combined with the soft one-hot representation of time gaps achieved the highest score: an area under the receiver operating characteristic curve of 88.65%, specificity of 85.56%, sensitivity of 83.33% and an improvement of 11.7% over the same architecture without time information. This is the first attempt to predict retinopathy complications in patients with type 1 diabetes using deep learning and longitudinal data collected from patient visits. This study highlighted the significance of modeling time gaps between medical records to improve prediction performance and the utility of a generic framework for conducting extensive comparative studies.

Keywords: Artificial intelligence; Deep learning; HbA1c; Retinopathy; Time irregularity; Type 1 diabetes.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources