Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jan;33(1):2250059.
doi: 10.1142/S0129065722500599. Epub 2022 Nov 4.

Mixture 2D Convolutions for 3D Medical Image Segmentation

Affiliations

Mixture 2D Convolutions for 3D Medical Image Segmentation

Jianyong Wang et al. Int J Neural Syst. 2023 Jan.

Abstract

Three-dimensional (3D) medical image segmentation plays a crucial role in medical care applications. Although various two-dimensional (2D) and 3D neural network models have been applied to 3D medical image segmentation and achieved impressive results, a trade-off remains between efficiency and accuracy. To address this issue, a novel mixture convolutional network (MixConvNet) is proposed, in which traditional 2D/3D convolutional blocks are replaced with novel MixConv blocks. In the MixConv block, 3D convolution is decomposed into a mixture of 2D convolutions from different views. Therefore, the MixConv block fully utilizes the advantages of 2D convolution and maintains the learning ability of 3D convolution. It acts as 3D convolutions and thus can process volumetric input directly and learn intra-slice features, which are absent in the traditional 2D convolutional block. By contrast, the proposed MixConv block only contains 2D convolutions; hence, it has significantly fewer trainable parameters and less computation budget than a block containing 3D convolutions. Furthermore, the proposed MixConvNet is pre-trained with small input patches and fine-tuned with large input patches to improve segmentation performance further. In experiments on the Decathlon Heart dataset and Sliver07 dataset, the proposed MixConvNet outperformed the state-of-the-art methods such as UNet3D, VNet, and nnUnet.

Keywords: Mixture convolutional network; deep neural network; medical image segmentation.

PubMed Disclaimer

MeSH terms

LinkOut - more resources