Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Nov 20;193(Pt 1):474-484.
doi: 10.1016/j.freeradbiomed.2022.10.317. Epub 2022 Nov 2.

Fast and biphasic 8-nitroguanine production from guanine and peroxynitrite

Affiliations

Fast and biphasic 8-nitroguanine production from guanine and peroxynitrite

Ana G Sánchez et al. Free Radic Biol Med. .

Erratum in

Abstract

Guanine (Gua), among purines, is a preferred oxidation/nitration target because of its low one-electron redox potential. The reactive oxygen/nitrogen species peroxynitrite (ONOO-), produced in vivo by the reaction between nitric oxide (NO) and superoxide radical (O2•‒), is responsible for several oxidative modifications in biomolecules, including nitration, nitrosation, oxidation, and peroxidation. In particular, the nitration of Gua, although detected, as well as its reaction kinetics have been seldom investigated. Thus, we studied the concentration- and temperature-dependent formation of 8-nitroguanine (8-NitroGua) in phosphate buffer (pH 7.40) using stopped-flow spectrophotometry. Traces showed a biexponential behavior, with best-fit rate constants: kfast = 4.4 s-1 and kslow = 0.41 s-1 (30 °C, 400 μM both Gua and ONOO-). kfast increased linearly with the concentration of both reactants whereas kslow was concentration-independent. Linear regression analysis of kfast as a function of Gua and ONOO- concentration yielded values of 2.5-6.3 × 103 M-1s-1 and 1.5-3.5 s-1 for the second-order (slope) and first-order (ordinate) rate constants, respectively (30 °C). Since ONOO- is a short-lived species, its decay kinetics was also taken into account for this analysis. The 8-NitroGua product was stable for at least 4 h, so no spontaneous denitration was observed. Stopped-flow assays using antioxidants and free-radical scavengers suggested a mixed direct/indirect reaction mechanism for 8-NitroGua formation. Gua nitration by ONOO- was also observed in the presence of physiologically relevant CO2 concentrations. The reaction product identity, its yield (∼4.2%, with 400 μM ONOO- and 200 μM Gua), and the reaction mechanism were unequivocally determined by HPLC-MS/MS experiments. In conclusion, 8-NitroGua production at physiologic pH reached significant levels in a few hundred milliseconds, suggesting that the process might be kinetically relevant in vivo and can likely cause permanent nitrative damage to DNA bases.

Keywords: Free radicals; Kinetics; Mass spectrometry; Nitration; Purines; Reactive nitrogen species; Stopped-flow.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest None.

Publication types

LinkOut - more resources