Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Nov 20;193(Pt 1):459-473.
doi: 10.1016/j.freeradbiomed.2022.10.320. Epub 2022 Nov 3.

Sirtuin 7 mitigates renal ferroptosis, fibrosis and injury in hypertensive mice by facilitating the KLF15/Nrf2 signaling

Affiliations

Sirtuin 7 mitigates renal ferroptosis, fibrosis and injury in hypertensive mice by facilitating the KLF15/Nrf2 signaling

Xue-Ting Li et al. Free Radic Biol Med. .

Abstract

Hypertension is one of the leading causes of chronic kidney disease characterized with renal fibrosis. This study aimed to investigate roles and mechanisms of sirtuin 7 (SIRT7) in hypertensive renal injury. Mini-pumps were implanted to male C57BL/6 mice to deliver angiotensin (Ang) Ⅱ (1.5 mg/kg/d) or saline for 2 weeks. Ang Ⅱ infusion resulted in marked increases in systolic blood pressure levels, renal ferroptosis and interstitial fibrosis in hypertensive mice, concomitantly with downregulated SIRT7 and Krüppel-like factor 15 (KLF15) levels. Notably, administration of recombinant adeno-associated virus-SIRT7 or ferroptosis inhibitor ferrostatin-1 effectively mitigated Ang Ⅱ-triggered renal ferroptosis, epithelial-mesenchymal transition (EMT), interstitial fibrosis, renal functional and structural injury in hypertensive mice by blunting the KIM-1/NOX4 signaling and enforcing the KLF15/Nrf2 and xCT/GPX4 signaling, respectively. In primary cultured mouse renal tubular epithelial cells (TECs), Ang Ⅱ pretreatment led to repressed SIRT7 expression and augmented ferroptosis as well as partial EMT, which were substantially antagonized by rhSIRT7 or ferrostatin-1 administration. Additionally, both Nrf2 inhibitor ML385 and KLF15 siRNA strikingly abolished the rhSIRT7-mediated beneficial roles in mouse renal TECs in response to Ang Ⅱ with reduced expression of Nrf2, xCT and GPX4. More importantly, ML385 administration remarkably amplified Ang Ⅱ-mediated ROS generation, lipid peroxidation and ferroptosis in renal TECs, which were significantly reversed by ferrostatin-1. In conclusion, SIRT7 alleviates renal ferroptosis, lipid peroxidation, and partial EMT under hypertensive status by facilitating the KLF15/Nrf2 signaling, thereby mitigating renal fibrosis, injury and dysfunction. Targeting SIRT7 signaling serves as a promising strategy for hypertension and hypertensive renal injury.

Keywords: Epithelial-mesenchymal transition; Ferroptosis; Hypertension; Renal fibrosis; Sirtuin 7.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no conflicts of interest.

Publication types

LinkOut - more resources