Computational modeling of the effect of five mutations on the structure of the ACE2 receptor and their correlation with infectivity and virulence of some emerged variants of SARS-CoV-2 suggests mechanisms of binding affinity dysregulation
- PMID: 36336003
- PMCID: PMC9630301
- DOI: 10.1016/j.cbi.2022.110244
Computational modeling of the effect of five mutations on the structure of the ACE2 receptor and their correlation with infectivity and virulence of some emerged variants of SARS-CoV-2 suggests mechanisms of binding affinity dysregulation
Abstract
Interactions between the human angiotensin-converting enzyme 2 (ACE2) and the RBD region of the SARS-CoV-2 Spike protein are critical for virus entry into the host cell. The objective of this work was to identify some of the most relevant SARS-CoV-2 Spike variants that emerged during the pandemic and evaluate their binding affinity with human variants of ACE2 since some ACE2 variants can enhance or reduce the affinity of the interaction between the ACE2 and S proteins. However, no information has been sought to extrapolate to different variants of SARS-CoV-2. Therefore, to understand the impact on the affinity of the interaction between ACE2 protein variants and SARS-CoV-2 protein S variants, molecular docking was used in this study to predict the effects of five mutations of ACE2 when they interact with Alpha, Beta, Delta, Omicron variants and a hypothetical variant, which present mutations in the RBD region of the SARS-CoV-2 Spike protein. Our results suggest that these variants could alter the interaction of the Spike and the human ACE2 protein, losing or creating new inter-protein contacts, enhancing viral fitness by improving binding affinity, and leading to an increase in infectivity, virulence, and transmission. This investigation highlighted that the S19P mutation of ACE2 decreases the binding affinity between the ACE2 and Spike proteins in the presence of the Beta variant and the wild-type variant of SARS-CoV-2 isolated in Wuhan-2019. The R115Q mutation of ACE2 lowers the binding affinity of these two proteins in the presence of the Beta and Delta variants. Similarly, the K26R mutation lowers the affinity of the interaction between the ACE2 and Spike proteins in the presence of the Alpha variant. This decrease in binding affinity is probably due to the lack of interaction between some of the key residues of the interaction complex between the ACE2 protein and the RBD region of the SARS-CoV-2 Spike protein. Therefore, ACE2 mutations appear in the presence of these variants, they could suggest an intrinsic resistance to COVID-19 disease. On the other hand, our results suggested that the K26R, M332L, and K341R mutations of ACE2 expressively showed the affinity between the ACE2 and Spike proteins in the Alpha, Beta, and Delta variants. Consequently, these ACE2 mutations in the presence of the Alpha, Beta, and delta variants of SARS-CoV-2 could be more infectious and virulent in human cells compared to the SARS-CoV-2 isolated in Wuhan-2019 and it could have a negative prognosis of the disease. Finally, the Omicron variant in interaction with ACE2 WT, S19P, R115Q, M332L, and K341R mutations of ACE2 showed a significant decrease in binding affinity. This could be consistent that the Omicron variant causes less severe symptoms than previous variants. On the other hand, our results suggested Omicron in the complex with K26R, the binding affinity is increased between ACE2/RBD, which could indicate a negative prognosis of the disease in people with these allelic conditions.
Keywords: ACE2-SARS-CoV-2; Alpha; Beta; Binding affinity; Delta; Omicron.
Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Figures





Similar articles
-
Effects of common mutations in the SARS-CoV-2 Spike RBD and its ligand, the human ACE2 receptor on binding affinity and kinetics.Elife. 2021 Aug 26;10:e70658. doi: 10.7554/eLife.70658. Elife. 2021. PMID: 34435953 Free PMC article.
-
V367F Mutation in SARS-CoV-2 Spike RBD Emerging during the Early Transmission Phase Enhances Viral Infectivity through Increased Human ACE2 Receptor Binding Affinity.J Virol. 2021 Jul 26;95(16):e0061721. doi: 10.1128/JVI.00617-21. Epub 2021 Jul 26. J Virol. 2021. PMID: 34105996 Free PMC article.
-
Assessment of mutations on RBD in the Spike protein of SARS-CoV-2 Alpha, Delta and Omicron variants.Sci Rep. 2022 May 20;12(1):8540. doi: 10.1038/s41598-022-12479-9. Sci Rep. 2022. PMID: 35595778 Free PMC article.
-
How Do Point Mutations Enhancing the Basic Character of the RBDs of SARS-CoV-2 Variants Affect Their Transmissibility and Infectivity Capacities?Viruses. 2022 Apr 10;14(4):783. doi: 10.3390/v14040783. Viruses. 2022. PMID: 35458513 Free PMC article. Review.
-
The Biological Functions and Clinical Significance of SARS-CoV-2 Variants of Corcern.Front Med (Lausanne). 2022 May 20;9:849217. doi: 10.3389/fmed.2022.849217. eCollection 2022. Front Med (Lausanne). 2022. PMID: 35669924 Free PMC article. Review.
Cited by
-
Genetic diversity and evolutionary dynamics of the Omicron variant of SARS-CoV-2 in Morocco.Pathog Glob Health. 2024 May;118(3):241-252. doi: 10.1080/20477724.2023.2250942. Epub 2023 Aug 27. Pathog Glob Health. 2024. PMID: 37635364 Free PMC article.
-
Impact of African-Specific ACE2 Polymorphisms on Omicron BA.4/5 RBD Binding and Allosteric Communication Within the ACE2-RBD Protein Complex.Int J Mol Sci. 2025 Feb 6;26(3):1367. doi: 10.3390/ijms26031367. Int J Mol Sci. 2025. PMID: 39941135 Free PMC article.
-
Combining MOE Bioinformatics Analysis and In Vitro Pseudovirus Neutralization Assays to Predict the Neutralizing Ability of CV30 Monoclonal Antibody on SARS-CoV-2 Variants.Viruses. 2023 Jul 17;15(7):1565. doi: 10.3390/v15071565. Viruses. 2023. PMID: 37515251 Free PMC article.
-
Three-Dimensional Modeling of Camelus dromedarius T Cell Receptor Gamma (TRG)_Delta (TRD)/CD1D Complex Reveals Different Binding Interactions Depending on the TRD CDR3 Length.Antibodies (Basel). 2025 May 29;14(2):46. doi: 10.3390/antib14020046. Antibodies (Basel). 2025. PMID: 40558100 Free PMC article.
References
-
- Tanaka S., Nelson G., Olson C.A., Buzko O., Higashide W., Shin A., Gonzalez M., Taft J., Patel R., Buta S., Richardson A., Bogunovic D., Spilman P., Niazi K., Rabizadeh S., Soon-Shiong P. An ACE2 Triple Decoy that neutralizes SARS-CoV-2 shows enhanced affinity for virus variants. Sci. Rep. 2021;11(1):1–12. doi: 10.1038/s41598-021-91809-9. - DOI - PMC - PubMed
-
- Weisblum Y., Schmidt F., Zhang F., DaSilva J., Poston D., Lorenzi J.C.C., Muecksch F., Rutkowska M., Hoffmann H.H., Michailidis E., Gaebler C., Agudelo M., Cho A., Wang Z., Gazumyan A., Cipolla M., Luchsinger L., Hillyer C.D., Caskey M.…Bieniasz P.D. Escape from neutralizing antibodies 1 by SARS-CoV-2 spike protein variants. Elife. 2020;9:1. doi: 10.7554/eLife.61312. - DOI - PMC - PubMed
-
- Wang Z., Schmidt F., Weisblum Y., Muecksch F., Barnes C.O., Finkin S., Schaefer-Babajew D., Cipolla M., Gaebler C., Lieberman J.A., Oliveira T.Y., Yang Z., Abernathy M.E., Huey-Tubman K.E., Hurley A., Turroja M., West K.A., Gordon K., Millard K.G.…Nussenzweig M.C. mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature. 2021;592(7855):616–622. doi: 10.1038/s41586-021-03324-6. - DOI - PMC - PubMed
MeSH terms
Substances
Supplementary concepts
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous