Immobilization of photocatalytic materials for (waste)water treatment using 3D printing technology - advances and challenges
- PMID: 36336185
- DOI: 10.1016/j.envpol.2022.120549
Immobilization of photocatalytic materials for (waste)water treatment using 3D printing technology - advances and challenges
Abstract
Photocatalysis has been considered a promising technology for the elimination of a wide range of pollutants in water. Various types of photocatalysts (i.e., homojunction, heterojunction, dual Z-scheme photocatalyst) have been developed in recent years to address the drawbacks of conventional photocatalysts, such as the large energy band gap and rapid recombination rate of photogenerated electrons and holes. However, there are still challenges in the design of photocatalytic reactors that limit their wider application for real (waste)water treatment, such as difficulties in their recovery and reuse from treated (waste)waters. 3D printing technologies have been introduced very recently for the immobilization of materials in novel photocatalytic reactor designs. The present review aims to summarize and discuss the advances and challenges in the application of various 3D printing technologies (i.e., stereolithography, inkjet printing, and direct ink writing) for the fabrication of stable photocatalytic materials for (waste)water treatment purposes. Furthermore, the limitations in the implementation of these technologies to design future generations of photocatalytic reactors have been critically discussed, and recommendations for future studies have been presented.
Keywords: (waste)water treatment; 3D printing; Efficiency; Immobilization; Photocatalytic.
Copyright © 2022 Elsevier Ltd. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Publication types
LinkOut - more resources
Full Text Sources
Miscellaneous