Best practices for multi-ancestry, meta-analytic transcriptome-wide association studies: Lessons from the Global Biobank Meta-analysis Initiative
- PMID: 36341024
- PMCID: PMC9631681
- DOI: 10.1016/j.xgen.2022.100180
Best practices for multi-ancestry, meta-analytic transcriptome-wide association studies: Lessons from the Global Biobank Meta-analysis Initiative
Abstract
The Global Biobank Meta-analysis Initiative (GBMI), through its diversity, provides a valuable opportunity to study population-wide and ancestry-specific genetic associations. However, with multiple ascertainment strategies and multi-ancestry study populations across biobanks, GBMI presents unique challenges in implementing statistical genetics methods. Transcriptome-wide association studies (TWASs) boost detection power for and provide biological context to genetic associations by integrating genetic variant-to-trait associations from genome-wide association studies (GWASs) with predictive models of gene expression. TWASs present unique challenges beyond GWASs, especially in a multi-biobank, meta-analytic setting. Here, we present the GBMI TWAS pipeline, outlining practical considerations for ancestry and tissue specificity, meta-analytic strategies, and open challenges at every step of the framework. We advise conducting ancestry-stratified TWASs using ancestry-specific expression models and meta-analyzing results using inverse-variance weighting, showing the least test statistic inflation. Our work provides a foundation for adding transcriptomic context to biobank-linked GWASs, allowing for ancestry-aware discovery to accelerate genomic medicine.
Conflict of interest statement
DECLARATION OF INTERESTS The authors declare no competing interests.
Figures





Similar articles
-
Global Biobank Meta-analysis Initiative: Powering genetic discovery across human disease.Cell Genom. 2022 Oct 12;2(10):100192. doi: 10.1016/j.xgen.2022.100192. eCollection 2022 Oct 12. Cell Genom. 2022. PMID: 36777996 Free PMC article.
-
METRO: Multi-ancestry transcriptome-wide association studies for powerful gene-trait association detection.Am J Hum Genet. 2022 May 5;109(5):783-801. doi: 10.1016/j.ajhg.2022.03.003. Epub 2022 Mar 24. Am J Hum Genet. 2022. PMID: 35334221 Free PMC article.
-
Global Biobank analyses provide lessons for developing polygenic risk scores across diverse cohorts.Cell Genom. 2023 Jan 4;3(1):100241. doi: 10.1016/j.xgen.2022.100241. eCollection 2023 Jan 11. Cell Genom. 2023. PMID: 36777179 Free PMC article.
-
Multivariate adaptive shrinkage improves cross-population transcriptome prediction and association studies in underrepresented populations.HGG Adv. 2023 Jul 1;4(4):100216. doi: 10.1016/j.xhgg.2023.100216. eCollection 2023 Oct 12. HGG Adv. 2023. PMID: 37869564 Free PMC article.
-
Biobanking as a Tool for Genomic Research: From Allele Frequencies to Cross-Ancestry Association Studies.J Pers Med. 2022 Dec 9;12(12):2040. doi: 10.3390/jpm12122040. J Pers Med. 2022. PMID: 36556260 Free PMC article. Review.
Cited by
-
Isoform-level transcriptome-wide association uncovers genetic risk mechanisms for neuropsychiatric disorders in the human brain.Nat Genet. 2023 Dec;55(12):2117-2128. doi: 10.1038/s41588-023-01560-2. Epub 2023 Nov 30. Nat Genet. 2023. PMID: 38036788 Free PMC article.
-
Integration of estimated regional gene expression with neuroimaging and clinical phenotypes at biobank scale.PLoS Biol. 2024 Sep 13;22(9):e3002782. doi: 10.1371/journal.pbio.3002782. eCollection 2024 Sep. PLoS Biol. 2024. PMID: 39269986 Free PMC article.
-
A multi-ancestry cerebral cortex transcriptome-wide association study identifies genes associated with smoking behaviors.Mol Psychiatry. 2024 Nov;29(11):3580-3589. doi: 10.1038/s41380-024-02605-6. Epub 2024 May 30. Mol Psychiatry. 2024. PMID: 38816585
-
Multi-ancestry transcriptome-wide association analyses yield insights into tobacco use biology and drug repurposing.Nat Genet. 2023 Feb;55(2):291-300. doi: 10.1038/s41588-022-01282-x. Epub 2023 Jan 26. Nat Genet. 2023. PMID: 36702996 Free PMC article.
-
Multiome-wide Association Studies: Novel Approaches for Understanding Diseases.Genomics Proteomics Bioinformatics. 2024 Dec 3;22(5):qzae077. doi: 10.1093/gpbjnl/qzae077. Genomics Proteomics Bioinformatics. 2024. PMID: 39471467 Free PMC article. Review.
References
Grants and funding
- R01 GM140287/GM/NIGMS NIH HHS/United States
- R01 HG011138/HG/NHGRI NIH HHS/United States
- T32 HG010464/HG/NHGRI NIH HHS/United States
- R01 HG006399/HG/NHGRI NIH HHS/United States
- R01 CA251555/CA/NCI NIH HHS/United States
- R01 CA244670/CA/NCI NIH HHS/United States
- K99 HG012222/HG/NHGRI NIH HHS/United States
- R01 HG009120/HG/NHGRI NIH HHS/United States
- R01 AI153827/AI/NIAID NIH HHS/United States
- R56 AG068026/AG/NIA NIH HHS/United States
- R35 HG010718/HG/NHGRI NIH HHS/United States
- R01 MH115676/MH/NIMH NIH HHS/United States
- R01 MH126459/MH/NIMH NIH HHS/United States
- U01 HG009086/HG/NHGRI NIH HHS/United States
- U01 HG011715/HG/NHGRI NIH HHS/United States
LinkOut - more resources
Full Text Sources