Implementing High Dimensional Reduction Analysis on Histocytometric Data
- PMID: 36342306
- DOI: 10.1002/cpz1.586
Implementing High Dimensional Reduction Analysis on Histocytometric Data
Abstract
In a previous protocol article, we demonstrated construction of a histocytometry pipeline that is capable of both segmenting highly aggregated cell populations and retaining the original intensity data range of the input microscopy images. In the protocol presented here, using the output from the aforementioned article, we demonstrate how to phenotype the data using the high dimensional reduction analysis technique optimized t-distributed stochastic neighbor embedding (opt-t-SNE) and compare it to traditional manual gating. Additionally, we present a protocol illustrating the advantage of the inclusion of cell junction/membrane markers for accurately segmenting highly aggregated cell populations in ilastik. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Phenotyping lymph node populations using manual gating Basic Protocol 2: Phenotyping lymph node populations using t-SNE dimensional reduction Support Protocol: ilastik segmentation using a pan marker.
Keywords: cell segmentation; high dimensional reduction analysis; histocytometry; immunophenotyping; microscopy.
© 2022 Wiley Periodicals LLC.
References
Literature Cited
References
-
- Belkina, A. C., Ciccolella, C. O., Anno, R., Halpert, R., Spidlen, J., & Snyder-Cappione, J. E. (2019). Automated optimized parameters for T-distributed stochastic neighbor embedding improve visualization and analysis of large datasets. Nature Communication, 10(1), 5415. doi: 10.1038/s41467-019-13055-y
-
- Goltsev, Y., Samusik, N., Kennedy-Darling, J., Bhate, S., Hale, M., Vazquez, G., … Nolan, G. P. (2018). Deep profiling of mouse splenic architecture with CODEX multiplexed imaging. Cell, 174(4), 968-981.e915. doi: 10.1016/j.cell.2018.07.010
-
- Grant, S. M., Lou, M., Yao, L., Germain, R. N., & Radtke, A. J. (2020). The lymph node at a glance - How spatial organization optimizes the immune response. Journal of Cell Science, 133(5). doi: 10.1242/jcs.241828
-
- Levine, J. H., Simonds, E. F., Bendall, S. C., Davis, K. L., Amir, E.-A. D., Tadmor, M. D., … Nolan, G. P. (2015). Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Cell, 162(1), 184-197. doi: 10.1016/j.cell.2015.05.047
-
- Marsh-Wakefield, F. M., Mitchell, A. J., Norton, S. E., Ashhurst, T. M., Leman, J. K., Roberts, J. M., … Kemp, R. A. (2021). Making the most of high-dimensional cytometry data. Immunology Cell Biology, 99(7), 680-696. doi: 10.1111/imcb.12456
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources