Value of Presurgical 18F-FDG PET/CT Radiomics for Predicting Mediastinal Lymph Node Metastasis in Patients with Lung Adenocarcinoma
- PMID: 36342812
- DOI: 10.1089/cbr.2022.0038
Value of Presurgical 18F-FDG PET/CT Radiomics for Predicting Mediastinal Lymph Node Metastasis in Patients with Lung Adenocarcinoma
Abstract
Objective: The aim of this study was to develop a 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) radiomic model for predicting mediastinal lymph node metastasis (LNM) in presurgical patients with lung adenocarcinoma. Methods: The study enrolled 320 patients with lung adenocarcinoma (288 internal and 32 external cases) and extracted 190 radiomic features using the LIFEx package. Optimal radiomic features to build a radiomic model were selected using the least absolute shrinkage and selection operator algorithm. Logistic regression was used to build the clinical and complex (combined radiomic and clinical variables) models. Results: Ten radiomic features were selected. In the training group, the area under the receiver operating characteristic curve of the complex model was significantly higher than that of the radiomic and clinical models [0.924 (95% CI: 0.887-0.961) vs. 0.863 (95% CI: 0.814-0.912; p = 0.001) and 0.838 (95% CI: 0.783-0.894; p = 0.000), respectively]. The sensitivity, specificity, accuracy, and positive and negative predictive values of the radiomic model were 0.857, 0.790, 0.811, and 0.651 and 0.924, respectively, which were better than that of visual evaluation (0.539, 0.724, 0.667, and 0.472 and 0.775, respectively) and PET semiquantitative analyses (0.619, 0.732, 0.697, and 0.513 and 0.808, respectively). Conclusions: 18F-FDG PET/CT radiomics showed good predictive performance for LNM and improved the N-stage accuracy of lung adenocarcinoma.
Keywords: 18F-FDG PET/CT; lung adenocarcinoma; lymph node metastasis; radiomics.
Similar articles
-
Predictive value of radiomic features extracted from primary lung adenocarcinoma in forecasting thoracic lymph node metastasis: a systematic review and meta-analysis.BMC Pulm Med. 2024 May 18;24(1):246. doi: 10.1186/s12890-024-03020-x. BMC Pulm Med. 2024. PMID: 38762472 Free PMC article.
-
The value of PET/CT radiomic texture analysis of primary mass and mediastinal lymph node on survival in patients with non-small cell lung cancer.Rev Esp Med Nucl Imagen Mol (Engl Ed). 2024 Sep-Oct;43(5):500027. doi: 10.1016/j.remnie.2024.500027. Epub 2024 Jul 17. Rev Esp Med Nucl Imagen Mol (Engl Ed). 2024. PMID: 39029620
-
Developing a primary tumor and lymph node 18F-FDG PET/CT-clinical (TLPC) model to predict lymph node metastasis of resectable T2-4 NSCLC.J Cancer Res Clin Oncol. 2023 Jan;149(1):247-261. doi: 10.1007/s00432-022-04545-6. Epub 2022 Dec 24. J Cancer Res Clin Oncol. 2023. PMID: 36565319 Free PMC article.
-
A machine learning-based 18F-FDG PET/CT multi-modality fusion radiomics model to predict Mediastinal-Hilar lymph node metastasis in NSCLC: a multi-centre study.Clin Radiol. 2025 Apr;83:106832. doi: 10.1016/j.crad.2025.106832. Epub 2025 Jan 29. Clin Radiol. 2025. PMID: 39983386
-
18F-FDG PET/CT Semiquantitative and Radiomic Features for Assessing Pathologic Axillary Lymph Node Status in Clinical Stage I-III Breast Cancer Patients: A Systematic Review.Curr Oncol. 2025 May 23;32(6):300. doi: 10.3390/curroncol32060300. Curr Oncol. 2025. PMID: 40558244 Free PMC article. Review.
Cited by
-
Circ-SFMBT2 sponges miR-224-5p to induce ketamine-induced cystitis by up-regulating metadherin (MTDH).Hum Cell. 2023 Nov;36(6):2040-2054. doi: 10.1007/s13577-023-00972-w. Epub 2023 Aug 29. Hum Cell. 2023. PMID: 37642831
-
Clinico-biological-radiomics (CBR) based machine learning for improving the diagnostic accuracy of FDG-PET false-positive lymph nodes in lung cancer.Eur J Med Res. 2023 Dec 2;28(1):554. doi: 10.1186/s40001-023-01497-6. Eur J Med Res. 2023. PMID: 38042812 Free PMC article. Clinical Trial.
-
Computed tomography-based radiomics model for predicting station 4 lymph node metastasis in non-small cell lung cancer.BMC Med Imaging. 2025 Jun 4;25(1):202. doi: 10.1186/s12880-025-01686-1. BMC Med Imaging. 2025. PMID: 40468196 Free PMC article.
-
2-[18F]FDG PET-based quantification of lymph node metabolic heterogeneity for predicting lymph node metastasis in patients with colorectal cancer.Eur J Nucl Med Mol Imaging. 2024 May;51(6):1729-1740. doi: 10.1007/s00259-023-06578-6. Epub 2023 Dec 27. Eur J Nucl Med Mol Imaging. 2024. PMID: 38150017
-
Predictive value of radiomic features extracted from primary lung adenocarcinoma in forecasting thoracic lymph node metastasis: a systematic review and meta-analysis.BMC Pulm Med. 2024 May 18;24(1):246. doi: 10.1186/s12890-024-03020-x. BMC Pulm Med. 2024. PMID: 38762472 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical