Mitochondrial haplogroups and cognitive progression in Parkinson's disease
- PMID: 36343661
- PMCID: PMC10202390
- DOI: 10.1093/brain/awac327
Mitochondrial haplogroups and cognitive progression in Parkinson's disease
Abstract
Mitochondria are a culprit in the onset of Parkinson's disease, but their role during disease progression is unclear. Here we used Cox proportional hazards models to exam the effect of variation in the mitochondrial genome on longitudinal cognitive and motor progression over time in 4064 patients with Parkinson's disease. Mitochondrial macro-haplogroup was associated with reduced risk of cognitive disease progression in the discovery and replication population. In the combined analysis, patients with the super macro-haplogroup J, T, U# had a 41% lower risk of cognitive progression with P = 2.42 × 10-6 compared to those with macro-haplogroup H. Exploratory analysis indicated that the common mitochondrial DNA variant, m.2706A>G, was associated with slower cognitive decline with a hazard ratio of 0.68 (95% confidence interval 0.56-0.81) and P = 2.46 × 10-5. Mitochondrial haplogroups were not appreciably linked to motor progression. This initial genetic survival study of the mitochondrial genome suggests that mitochondrial haplogroups may be associated with the pace of cognitive progression in Parkinson's disease over time.
Keywords: Parkinson’s disease; cognitive progression; mitochondrial haplogroups.
© The Author(s) 2022. Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Conflict of interest statement
Outside this work, C.R.S. has served as consultant, scientific collaborator or on scientific advisory boards for Sanofi, Berg Health, Pfizer and Biogen and has received grants from NIH, U.S. Department of Defense, American Parkinson Disease Association, and the Michael J Fox Foundation (MJFF). C.R.S. is named as co-inventor on U.S. patent applications held by Brigham and Women’s Hospital relating to therapeutics; biomarkers; and polygenic scores for neurodegenerative diseases. M.A.S. has no conflict of interest related to this work. Outside this work, M.A.S. has received grants from NINDS, DoD, MJFF, the Parkinson’s Foundation and Farmer Family Foundation and has served as a consultant to commercial programs: Eli Lilly & Co (data monitoring committee), Prevail Therapeutics (scientific advisory board) and Denali Therapeutics (scientific advisory board); and via the Parkinson Study Group to nQ Medical (scientific advisory board), Chase Therapeutics (scientific advisory board) and Partner Therapeutics (scientific advisory board). A.-M.W. has received research funding from the ALS Association, the Parkinson's Foundation, has participated in clinical trials funded by Acorda, Biogen, Bristol-Myers Squibb, Sanofi/Genzyme, Pfizer and Abbvie and received consultant payments from Mitsubishi Tanabe and Accordant. J.-C.C. has no conflict of interest related to this work. Outside this work, J.C.C. has received honoraria for consulting in advisory boards for Abbvie, Actelion, Air Liquide, Biogen, BMS, BrainEver, Clevexel, Denali, Pfizer, Theranexus and Zambon. B.R. is an employee of and holds equity in Praxis Precision Medicines and is an advisor for Caraway Therapeutics and Brain Neurotherapy Bio. I.S. is the Principal Investigator of a MJFF Computational Science Grant (2017–19). S.K. is supported by Multiple Sclerosis of Western-Australia (MSWA) and the Perron Institute. P.H. is a Scientific Advisor of Neuron23. T.G.B has no conflict of interest related to this work. Outside this work, T.G.B. has received grants from NIA, NINDS, MJFF and the State of Arizona, has served as a scientific advisory board member (with stock options) and consultant to Vivid Genomics, Inc. and has received honoraria from the World PD Coalition. J.J.v.H. has no conflict of interest related to this work. Outside this work, J.J.v.H. has received grants from the Alkemade-Keuls Foundation, Stichting Parkinson Fonds, Parkinson Vereniging, The Netherlands Organisation for Health Research and Development, The Netherlands Organisation for Scientific Research, Hersenstichting, AbbVie, MJFF and research support from Hoffmann-La-Roche, Lundbeck and the Centre of Human Drug Research. R.A.B. has no conflict of interest related to this work. Outside this work, R.A.B. received consultancy monies from LCT, FCDI, Novo Nordisk, Cellino, Sana, UCB; received royalties from Wiley and Springer-Nature; grant funding from CPT, NIHR Cambridge Biomedical Research Centre (146281), MRC, Wellcome (203151/Z/16/Z) and Rosetrees Trust (A1519 M654). C.H.W.-G. has no conflict of interest related to this work. C.H.W.-G. is supported by a RCUK/UKRI Research Innovation Fellowship awarded by the Medical Research Council (MR/R007446/1) and the NIHR Cambridge Biomedical Research Centre and received grant support from MJFF, the Evelyn Trust, the Cure Parkinson’s Trust, Parkinson’s UK, the Rosetrees Trust and the Cambridge Centre for Parkinson-Plus. C.H.W.-G. has received honoraria from Lundbeck and Profile Pharma Ltd and consultancy payments from Modus Outcomes and Evidera. The other authors report no competing interests.
Figures


