Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2022 Dec;4(12):1847-1857.
doi: 10.1038/s42255-022-00698-3. Epub 2022 Nov 7.

A randomized clinical trial of lipid metabolism modulation with fenofibrate for acute coronavirus disease 2019

Collaborators, Affiliations
Randomized Controlled Trial

A randomized clinical trial of lipid metabolism modulation with fenofibrate for acute coronavirus disease 2019

Julio A Chirinos et al. Nat Metab. 2022 Dec.

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cytotoxicity may involve inhibition of peroxisome proliferator-activated receptor alpha. Fenofibrate activates peroxisome proliferator-activated receptor alpha and inhibits SARS-CoV-2 replication in vitro. Whether fenofibrate can be used to treat coronavirus disease 2019 (COVID-19) infection in humans remains unknown. Here, we randomly assigned inpatients and outpatients with COVID-19 within 14 d of symptom onset to 145 mg of oral fenofibrate nanocrystal formulation versus placebo for 10 d, in a double-blinded fashion. The primary endpoint was a severity score whereby participants were ranked across hierarchical tiers incorporating time to death, mechanical ventilation duration, oxygenation, hospitalization and symptom severity and duration. In total, 701 participants were randomized to fenofibrate (n = 351) or placebo (n = 350). The mean age of participants was 49 ± 16 years, 330 (47%) were female, mean body mass index was 28 ± 6 kg/m2 and 102 (15%) had diabetes. Death occurred in 41 participants. Compared with placebo, fenofibrate had no effect on the primary endpoint. The median (interquartile range) rank in the placebo arm was 347 (172, 453) versus 345 (175, 453) in the fenofibrate arm (P = 0.819). There was no difference in secondary and exploratory endpoints, including all-cause death, across arms. There were 61 (17%) adverse events in the placebo arm compared with 46 (13%) in the fenofibrate arm, with slightly higher incidence of gastrointestinal side effects in the fenofibrate group. Overall, among patients with COVID-19, fenofibrate has no significant effect on various clinically relevant outcomes ( NCT04517396 ).

PubMed Disclaimer

Conflict of interest statement

In the last 2 years, J.B.C. has received research grants from the National Institutes of Health and American Heart Association. In the last 2 years, J.A.C. has received consulting honoraria from Sanifit, Bristol Myers Squibb, Merck, Edwards Lifesciences, Bayer, JNJ, the University of Delaware, and research grants from the National Institutes of Health, Abbott, Microsoft, Fukuda-Denshi and Bristol Myers Squibb. J.A.C. has received compensation from the American Heart Association and the American College of Cardiology for editorial roles, and visiting speaker honoraria from Washington University, University of Utah, the Japanese Association for Cardiovascular Nursing and the Korean Society of Cardiology. E.J.G. has received honoraria from Abbott CH, bioMérieux, Brahms, GSK, InflaRx, Sobi and XBiotech; independent educational grants from Abbott CH, AxisShield, bioMérieux, InflaRx, Johnson & Johnson, MSD, Sobi and XBiotech; and funding from the Horizon 2020 Marie-Curie Project European Sepsis Academy (granted to the National and Kapodistrian University of Athens), and the Horizon 2020 European Grants ImmunoSep and RISKinCOVID (granted to the Hellenic Institute for the Study of Sepsis). In the last 2 years, N.K.S. has received compensation from the American Heart Association for editorial duties. The remaining authors declare no competing interests.

Figures

Fig. 1
Fig. 1
Participant enrolment, randomization and follow-up in the FEnofibRate as a Metabolic INtervention for COVID-19 (FERMIN) trial.
Fig. 2
Fig. 2. Key outcomes among participants in each randomization arm.
a, Distribution of the primary endpoint (ranked severity score) between the randomization arms (placebo N = 347 participants; fenofibrate N = 347 participants). The y axis represents the range of ranked severity scores, and the x axis represents the frequency density of distributions of the ranks in each treatment arm. The white dot represents the median ranked severity score, the solid box represents the IQR, and the vertical lines represent the upper-adjacent and lower-adjacent values. The upper-adjacent value and the IQR values were identical. b, Cumulative incidence for all-cause death at 30 d.
Fig. 3
Fig. 3. Forest plot of the differences in ranked severity scores across subgroups.
The plot represents the differences in median ranked severity scores between participants randomized to fenofibrate versus placebo in each subgroup. Positive values indicate better outcomes in the fenofibrate arm. Negative values indicate better outcomes in the placebo group. The central dot represents the difference in median scores and the error bars represent the 95% CIs.
Fig. 4
Fig. 4. Primary endpoint of the trial (ranked severity score).
Participants were ranked hierarchically according to their clinical course. The primary endpoint of the trial was a global rank score that ranked patient outcomes according to five factors, shown as tiers from top to bottom (labelled as subsets 1–5). The left-sided icons (walking person and person in hospital bed) indicate the participant status at the time of enrolment (outpatient and inpatient, respectively). The top tier included inpatients and outpatients, whereas other subsets included inpatients or outpatients, but not both. Outcomes of hypothetical participants are represented within each tier by the right-pointing arrows. The icons on the right of the arrows represent the participant status at trial completion or at the time of the relevant outcome event (such as death, hospital discharge or hospital admission). Participants were ranked within each tier according to the following specific criteria: tier 1, time to death (ranked from shortest to longest, up to 30 d after randomization); tier 2, for participants enrolled as inpatients, the number of days supported by mechanical ventilation (invasive or noninvasive) or ECMO (until hospital discharge, up to 30 d after randomization, ranked from longest to shortest); tier 3, for participants enrolled as inpatients who did not require mechanical ventilation or ECMO, the FiO2/SpO2 ratio area under the curve until hospital discharge, up to 30 d after randomization, ranked from highest to lowest; tier 4, for participants enrolled as outpatients who were subsequently hospitalized, the number of days out of the hospital during the 30-d period following randomization (ranked from lowest to highest); tier 5, for participants enrolled as outpatients who did not get hospitalized during the 30 d observation period, the modified dyspnoea Borg scale (mean value of assessments at ~5, ~10 and ~15 d, ranked from highest to lowest). AUC, area under the curve.
Extended Data Fig. 1
Extended Data Fig. 1
Kaplan–Meier curve of time to hospitalization (among participants enrolled as outpatients).
Extended Data Fig. 2
Extended Data Fig. 2
Cumulative incidence curve of time to discharge (among participants enrolled as inpatients).

Update of

  • A Randomized Trial of Lipid Metabolism Modulation with Fenofibrate for Acute Coronavirus Disease 2019.
    Chirinos J, Lopez-Jaramillo P, Giamarellos-Bourboulis E, Dávila-Del-Carpio G, Bizri A, Andrade-Villanueva J, Salman O, Cure-Cure C, Rosado-Santander N, Giraldo MC, González-Hernández L, Moghnieh R, Angeliki R, Saldarriaga MC, Pariona M, Medina C, Dimitroulis I, Vlachopoulos C, Gutierrez C, Rodriguez-Mori J, Gomez-Laiton E, Pereyra R, Hernández JR, Arbañil H, Accini-Mendoza J, Pérez-Mayorga M, Milionis H, Poulakou G, Sánchez G, Valdivia-Vega R, Villavicencio-Carranza M, Ayala-Garcia R, Castro-Callirgos C, Carrasco RA, Danos WL, Sharkoski T, Greene K, Pourmussa B, Greczylo C, Chittams J, Katsaounou P, Alexiou Z, Sympardi S, Sweitzer N, Putt M, Cohen J. Chirinos J, et al. Res Sq [Preprint]. 2022 Aug 10:rs.3.rs-1933913. doi: 10.21203/rs.3.rs-1933913/v1. Res Sq. 2022. Update in: Nat Metab. 2022 Dec;4(12):1847-1857. doi: 10.1038/s42255-022-00698-3. PMID: 35982675 Free PMC article. Updated. Preprint.

References

    1. Bornstein SR, Dalan R, Hopkins D, Mingrone G, Boehm BO. Endocrine and metabolic link to coronavirus infection. Nat. Rev. Endocrinol. 2020;16:297–298. doi: 10.1038/s41574-020-0353-9. - DOI - PMC - PubMed
    1. Zhou F, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395:1054–1062. doi: 10.1016/S0140-6736(20)30566-3. - DOI - PMC - PubMed
    1. Guan WJ, et al. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 2020;382:1708–1720. doi: 10.1056/NEJMoa2002032. - DOI - PMC - PubMed
    1. Wu C, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern. Med. 2020;180:934–943. doi: 10.1001/jamainternmed.2020.0994. - DOI - PMC - PubMed
    1. Oguz, S. H. & Okan Yildiz, B. Endocrine disorders and COVID-19. Annu. Rev. Med.10.1146/annurev-med-043021-033509 (2022). - PubMed

Publication types

Associated data