Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jan-Mar;24(1):1-12.
doi: 10.1016/j.vacun.2022.10.006. Epub 2022 Nov 4.

Determination of binding affinity of tunicamycin with SARS-CoV-2 proteins: Proteinase, protease, nsp2, nsp9, ORF3a, ORF7a, ORF8, ORF9b, envelope and RBD of spike glycoprotein

Affiliations

Determination of binding affinity of tunicamycin with SARS-CoV-2 proteins: Proteinase, protease, nsp2, nsp9, ORF3a, ORF7a, ORF8, ORF9b, envelope and RBD of spike glycoprotein

Ali Adel Dawood. Vacunas. 2023 Jan-Mar.

Abstract

Introduction: Despite the availability of several COVID-19 vaccines, the incidence of infections remains a serious issue. Tunicamycin (TM), an antibiotic, inhibited tumor growth, reduced coronavirus envelope glycoprotein subunit 2 synthesis, and decreased N-linked glycosylation of coronavirus glycoproteins.

Objectives: Our study aimed to determine how tunicamycin interacts with certain coronavirus proteins (proteinase, protease, nsp9, ORF7a, ORF3a, ORF9b, ORF8, envelope protein, nsp2, and RBD of spike glycoprotein). Methods: Several types of chemo and bioinformatics tools were used to achieve the aim of the study. As a result, virion's effectiveness may be impaired.

Results: TM can bind to viral proteins with various degrees of affinity. The proteinase had the highest binding affinity with TM. Proteins (ORF9b, ORF8, nsp9, and RBD) were affected by unfavorable donor or acceptor bonds that impact the degree of docking. ORF7a had the weakest affinities.

Conclusions: This antibiotic is likely to effect on SARS-CoV-2 in clinical studies.

Introducción: A pesar de la disponibilidad de varias vacunas contra la COVID-19, la incidencia de infecciones sigue siendo un problema grave. La tunicamicina (TM), un antibiótico, inhibió el crecimiento tumoral, redujo la síntesis de la subunidad 2 de la glicoproteína de la envoltura del coronavirus y disminuyó la glicosilación ligada a N de las glicoproteínas del coronavirus.

Objetivos: Nuestro estudio tuvo como objetivo determinar cómo interactúa la tunicamicina con ciertas proteínas del coronavirus (proteinasa, proteasa, nsp9, ORF7a, ORF3a, ORF9b, ORF8, proteína de la envoltura, nsp2 y RBD de glicoproteína de punta).

Métodos: Se utilizaron varios tipos de herramientas de quimioterapia y bioinformática para lograr el objetivo del estudio. Como resultado, la eficacia del virión puede verse afectada.

Resultados: La TM puede unirse a proteínas virales con diversos grados de afinidad. La proteinasa tenía la mayor afinidad de unión con TM. Las proteínas (ORF9b, ORF8, nsp9 y RBD) se vieron afectadas por enlaces donantes o aceptores desfavorables que afectan el grado de acoplamiento. ORF7a tenía las afinidades más débiles.

Conclusiones: Es probable que este antibiótico tenga efecto sobre el SARS-CoV-2 en estudios clínicos.

Keywords: COVID-19; Docking; Envelope; Spike; Tunicamycin.

PubMed Disclaimer

Conflict of interest statement

There is no conflict of interest in this work.

Figures

Fig 1
Fig 1
A: Chemical structure of tunicamycin. B: crystal structure of TM. C: 3D structure of TM after docking with a protein.
Fig 2
Fig 2
Molecular docking of 1P9S-TM. A: 2D interaction shows types of fusion in specific residues. B: Crystal structure of proteinase (1P9S) shows the interaction location with TM. C: Molecular docking residues of 1P9S-TM, residues of conventional hydrogen bond (green), residues of carbon-hydrogen bond (cyan), and alkyl residues (magenta).
Fig 3
Fig 3
Molecular docking of 1Q2W-TM. A: 2D interaction shows types of fusion in specific residues. B: Crystal structure of protease (1Q2W) shows the interaction location with TM. C: Molecular docking residues of 1Q2W-TM, residues of conventional hydrogen bond (green), residues of carbon-hydrogen bond (cyan), alkyl residues (magenta), and unfavorable acceptor bound (red).
Fig 4
Fig 4
Molecular docking of 1QZ8-TM. A: 2D interaction shows types of fusion in specific residues. B: The crystal structure of nsp9 (1QZ8) shows the interaction location with TM. C: Molecular docking residues of 1QZ8-TM, residues of conventional hydrogen bond (green), residues of carbon-hydrogen bond (cyan), alkyl residues (magenta), pi-donor hydrogen bond (dark cyan), and unfavorable acceptor or donor bond (red).
Fig 5
Fig 5
Molecular docking of 1XAK-TM. A: 2D interaction shows types of fusion in specific residues. B: The crystal structure of ORF7a (1XAK) shows the interaction location with TM. C: Molecular docking residues of 1XAK-TM, residues of conventional hydrogen bond (green), residues of carbon-hydrogen bond (cyan), alkyl, and pi-alkyl residues (magenta), and pi-sulfur bond (pale orange).
Fig 6
Fig 6
Molecular docking of 6XDC-TM. A: 2D interaction shows types of fusion in specific residues. B: The crystal structure of ORF3a (6XDC) shows the interaction location with TM. C: Molecular docking residues of 6XDC-TM, residues of conventional hydrogen bond (green), residues of carbon-hydrogen bond (cyan), alkyl residues (magenta), pi-alkyl bond (dark magenta), and pi-pi-stacked bound (red).
Fig 7
Fig 7
Molecular docking of 7DHG-TM. A: 2D interaction shows types of fusion in specific residues. B: The crystal structure of ORF9b (7DHG) shows the interaction location with TM. C: Molecular docking residues of 7DHG-TM, residues of conventional hydrogen bond (green), residues of carbon-hydrogen bond (cyan), alkyl, and pi-alkyl residues (magenta), and unfavorable acceptor bond (red).
Fig 8
Fig 8
Molecular docking of 7JX6-TM. A: 2D interaction shows types of fusion in specific residues. B: The crystal structure of ORF8 (7JX6) shows the interaction location with TM. C: Molecular docking residues of 7JX6-TM, residues of conventional hydrogen bond (green), alkyl residues (magenta), and unfavorable donor residue (red).
Fig 9
Fig 9
Molecular docking of 7K3G-TM. A: 2D interaction shows types of fusion in specific residues. B: The crystal structure of envelope protein (7K3G) shows the interaction location with TM. C: Molecular docking residues of 7K3G-TM, residues of conventional hydrogen bond (green), residues of carbon-hydrogen bond (cyan), and alkyl and pi-alkyl residues (magenta).
Fig 10
Fig 10
A: The surface structure of pentameric envelope glycoprotein (7K3G). B: The molecular docking of 7K3G-TM.
Fig 11
Fig 11
Molecular docking of 7MSW-TM. A: 2D interaction shows types of fusion in specific residues. B: Crystal structure of nsp2 (7MSW) shows the interaction location with TM. C: Molecular docking residues of 7MSW-TM, residues of conventional hydrogen bond (green), residues of carbon-hydrogen bond (cyan), and alkyl and pi-alkyl residues (magenta).
Fig 12
Fig 12
Molecular docking of RBD (6M0J)-TM. A: 2D interaction shows types of fusion in specific residues. B: Crystal structure of RBD of spike glycoprotein (6M0J) shows the interaction location with TM. C: Molecular docking residues of RBD (6M0J)-TM, residues of conventional hydrogen bond (green), unfavorable donor residue (red), and alkyl and pi-alkyl residues (magenta).
Fig 13
Fig 13
Molecular docking of TM-RBD-ACE2. A: Cartoon structure of molecular docking of RBD-ACE2 (7K3G). B: Cartoon structure of the molecular docking of 7K3G-TM. C: The surface structure of 7K3G and TM shows the interaction residues of TM with RBD, hydrogen bond (green), unfavorable donor residue (red), and alkyl and pi-alkyl residues (magenta).

Similar articles

Cited by

References

    1. Angelini M.M., Akhlaghpour M., Neuman B.W., Buchmeier M.J. Severe acute respiratory syndrome coronavirus nonstructural proteins 3, 4, and 6 induce double-membrane vesicles. mBio. 2013;4(4) doi: 10.1128/mbio.00524-13. e00524-13. - DOI - PMC - PubMed
    1. Woo P.C., Lau S.K., Laml C.S. Discovery of seven novel mammalian and avian coronaviruses in deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and Betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J Virol. 2012;86(7):3995–4008. doi: 10.1128/jvi.06540-11. - DOI - PMC - PubMed
    1. Hoffmann M., Krüger N., Schulz S., et al. The Omicron variant is highly resistant against antibody-mediated neutralization: implications for control of the COVID-19 pandemic. Cell. 2022;185(3):447–456.e11. doi: 10.1016/j.cell.2021.12.032. - DOI - PMC - PubMed
    1. World Health Organization Tracking SARS-CoV-2 variants. 2021. https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/ Accessed 10 February 2022.
    1. Ullrich S., Ekanayake K., Otting G., Nitsche C. Main protease mutants of SARS-CoV-2 variants remain susceptible to nirmatrelvir. Bioorg Med Chem Lett. 2022 doi: 10.1016/j.bmcl.2022.128629. - DOI - PMC - PubMed