Site-Specific Albumin-Selective Ligation to Human Serum Albumin under Physiological Conditions
- PMID: 36350013
- PMCID: PMC9782315
- DOI: 10.1021/acs.bioconjchem.2c00361
Site-Specific Albumin-Selective Ligation to Human Serum Albumin under Physiological Conditions
Abstract
Human serum albumin (HSA) is the most abundant protein in human blood plasma. It plays a critical role in the native transportation of numerous drugs, metabolites, nutrients, and small molecules. HSA has been successfully used clinically as a noncovalent carrier for insulin (e.g., Levemir), GLP-1 (e.g., Liraglutide), and paclitaxel (e.g., Abraxane). Site-specific bioconjugation strategies for HSA only would greatly expand its role as the biocompatible, non-toxic platform for theranostics purposes. Using the enabling one-bead one-compound (OBOC) technology, we generated combinatorial peptide libraries containing myristic acid, a well-known binder to HSA at Sudlow I and II binding pockets, and an acrylamide. We then used HSA as a probe to screen the OBOC myristylated peptide libraries for reactive affinity elements (RAEs) that can specifically and covalently ligate to the lysine residue at the proximity of these pockets. Several RAEs have been identified and confirmed to be able to conjugate to HSA covalently. The conjugation can occur at physiological pH and proceed with a high yield within 1 h at room temperature. Tryptic peptide profiling of derivatized HSA has revealed two lysine residues (K225 and K414) as the conjugation sites, which is much more specific than the conventional lysine labeling strategy with N-hydroxysuccinimide ester. The RAE-driven site-specific ligation to HSA was found to occur even in the presence of other prevalent blood proteins such as immunoglobulin or whole serum. Furthermore, these RAEs are orthogonal to the maleimide-based conjugation strategy for Cys34 of HSA. Together, these attributes make the RAEs the promising leads to further develop in vitro and in vivo HSA bioconjugation strategies for numerous biomedical applications.
Conflict of interest statement
The authors declare no competing financial interest.
Figures





Similar articles
-
Site-selective labeling of a lysine residue in human serum albumin.Angew Chem Int Ed Engl. 2014 Oct 27;53(44):11783-6. doi: 10.1002/anie.201405924. Epub 2014 Sep 4. Angew Chem Int Ed Engl. 2014. PMID: 25196737
-
Chromatographic studies of chlorpropamide interactions with normal and glycated human serum albumin based on affinity microcolumns.J Chromatogr B Analyt Technol Biomed Life Sci. 2018 Oct 15;1097-1098:64-73. doi: 10.1016/j.jchromb.2018.09.001. Epub 2018 Sep 4. J Chromatogr B Analyt Technol Biomed Life Sci. 2018. PMID: 30205233 Free PMC article.
-
Characterization of tolazamide binding with glycated and normal human serum albumin by using high-performance affinity chromatography.J Pharm Biomed Anal. 2019 Mar 20;166:273-280. doi: 10.1016/j.jpba.2019.01.025. Epub 2019 Jan 14. J Pharm Biomed Anal. 2019. PMID: 30682693 Free PMC article.
-
Clinical impact of serum proteins on drug delivery.J Control Release. 2012 Jul 20;161(2):429-45. doi: 10.1016/j.jconrel.2011.11.028. Epub 2011 Dec 1. J Control Release. 2012. PMID: 22155554 Review.
-
Human serum albumin binders: A piggyback ride for long-acting therapeutics.Drug Discov Today. 2023 Oct;28(10):103738. doi: 10.1016/j.drudis.2023.103738. Epub 2023 Aug 15. Drug Discov Today. 2023. PMID: 37591409 Review.
Cited by
-
Versatility and stability of melamine foam-based biosensors (f-ELISA) using antibodies, nanobodies, and peptides as sensing probes.Talanta. 2024 Nov 1;279:126634. doi: 10.1016/j.talanta.2024.126634. Epub 2024 Jul 30. Talanta. 2024. PMID: 39121553
-
My Perspective on OBOC Combinatorial Technology.Methods Mol Biol. 2025;2934:3-12. doi: 10.1007/978-1-0716-4578-9_1. Methods Mol Biol. 2025. PMID: 40663319
References
-
- Peters T., JrAll about albumin: biochemistry, genetics, and medical applications; Academic press, 1995.
-
- Liu Z.; Chen X. Simple bioconjugate chemistry serves great clinical advances: albumin as a versatile platform for diagnosis and precision therapy. Chem. Soc. Rev. 2016, 45, 1432–1456. 10.1039/C5CS00158G. - DOI - PMC - PubMed
- Kratz F. Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J. Controlled Release 2008, 45, 171–1456. 10.1039/C5CS00158G. - DOI - PubMed
-
- Nagumo K.; Tanaka M.; Chuang V. T. G.; Setoyama H.; Watanabe H.; Yamada N.; Kubota K.; Tanaka M.; Matsushita K.; Yoshida A.; Jinnouchi H.; Anraku M.; Kadowaki D.; Ishima Y.; Sasaki Y.; Otagiri M.; Maruyama T. Cys34-cysteinylated human serum albumin is a sensitive plasma marker in oxidative stress-related chronic diseases. PLoS One 2014, 9, e8521610.1371/journal.pone.0085216. - DOI - PMC - PubMed
- Mehtala J. G.; Kulczar C.; Lavan M.; Knipp G.; Wei A. Cys34-PEGylated human serum albumin for drug binding and delivery. Bioconjugate Chem. 2015, 26, 941–949. 10.1021/acs.bioconjchem.5b00143. - DOI - PMC - PubMed
- Kratz F.; Müller-Driver R.; Hofmann I.; Drevs J.; Unger C. A novel macromolecular prodrug concept exploiting endogenous serum albumin as a drug carrier for cancer chemotherapy. J. Med. Chem. 2000, 43, 1253–1256. 10.1021/jm9905864. - DOI - PubMed
-
- Baldwin A. D.; Kiick K. L. Tunable degradation of maleimide–thiol adducts in reducing environments. Bioconjugate Chem. 2008, 22, 1946–1953. 10.1021/bc200148v. - DOI - PMC - PubMed
- Alley S. C.; Benjamin D. R.; Jeffrey S. C.; Okeley N. M.; Meyer D. L.; Sanderson R. J.; Senter P. D. Contribution of linker stability to the activities of anticancer immunoconjugates. Bioconjugate Chem. 2008, 19, 759–765. 10.1021/bc7004329. - DOI - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources