Chemoselective Decarboxylative Protonation Enabled by Cooperative Earth-Abundant Element Catalysis
- PMID: 36350328
- PMCID: PMC9839625
- DOI: 10.1002/anie.202213055
Chemoselective Decarboxylative Protonation Enabled by Cooperative Earth-Abundant Element Catalysis
Abstract
Decarboxylative protonation is a general deletion tactic to replace polar carboxylic acid groups with hydrogen or its isotope. Current methods rely on the pre-activation of acids, non-sustainable hydrogen sources, and/or expensive/highly oxidizing photocatalysts, presenting challenges to their wide adoption. Here we show that a cooperative iron/thiol catalyst system can readily achieve this transformation, hydrodecarboxylating a wide range of activated and unactivated carboxylic acids and overcoming scope limitations in previous direct methods. The reaction is readily scaled in batch configuration and can be directly performed in deuterated solvent to afford high yields of d-incorporated products with excellent isotope incorporation efficiency; characteristics not attainable in previous photocatalyzed approaches. Preliminary mechanistic studies indicate a radical mechanism and kinetic results of unactivated acids (KIE=1) are consistent with a light-limited reaction.
Keywords: Decarboxylation; Earth-Abundant Metal; Hydrogen Atom Transfer; Radicals; Synthetic Methods.
© 2022 Wiley-VCH GmbH.
Figures





References
-
-
For selected literature examples of decarboxylative functionalizations, see:
Wei Y, Hu P, Zhang M, Su W, Chem. Rev. 2017, 117, 8864 – 8907. Schwarz J, König B, Green Chem. 2018, 20, 323 – 361. Chen H, Liu YA, Liao X, Synthesis 2021, 53, 1 – 29. Huang H, Jia K, Chen Y, ACS Catal. 2016, 6, 4983 – 4988. Jin Y, Fu H, Asian J Org. Chem. 2017, 6, 368 – 385. Rodríguez N, Goossen L, Chem. Soc. Rev. 2011, 40, 5030 – 5048. Varenikov A, Shapiro E, Gandelman M, Chem. Rev. 2021, 121, 412 – 484. Patra T, Maiti D, Chem. Eur. J. 2017, 23, 7382 – 7401.
-
-
-
For selected literature examples of carboxylic acid-directed transformations, see:
Drapeau MP, Gooßen LJ, Chem. Eur. J. 2016, 22, 18654 – 18677. Das J, Mal DK, Maji S, Maiti D, ACS Catal. 2021, 11, 4205 – 4229. Engle KM, Mei T-S, Wasa M, Yu J-Q, Acc. Chem. Res. 2012, 45, 788 – 802. Chen Z, Wang B, Zhang J, Yu W, Liu Z, Zhang Y, Org. Chem. Front. 2015, 2, 1107 – 1295. Zhang F, Spring DR, Chem. Soc. Rev. 2014, 43, 6906 – 6919. Font M, Quibell JM, Perry GJP, Larrosa I, Chem. Commun. 2017, 53, 5584 – 5597. Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BUW, Schnürch M, Chem. Soc. Rev. 2018, 47, 6603 – 6743. For selected applications of decarboxylative protonation in total synthesis, see: Lathrop SP, Pompeo M, Chang W-TT, Movassaghi M, J. Am. Chem. Soc. 2016, 138, 7763 – 7769. Fang C, Shanahan CS, Paull DH, Martin SF, Angew. Chem. Int. Ed. 2012, 51, 10596 – 10599. Salahi F, Yao C, Norton JR, Snyder SA, Nat. Synthesis 2022, 1, 313 – 321.
-
-
-
For selected literature examples, see:
Kopf S, Bourriquen F, Li W, Neumann H, Junge K, Beller M, Chem. Rev. 2022, 122, 6634 – 6718. Li N, Li Y, Wu X, Zhu C, Xie J, Chem. Soc. Rev. 2022, 51, 6291 – 6306. Prakash G, Paul N, Oliver GA, Werz DB, Maiti D, Chem. Soc. Rev. 2022, 51, 3123 – 3163.
-
-
- Anderson JM, Kochi JK, J. Am. Chem. Soc. 1970, 92, 1651 – 1659.
- Anderson JM, Kochi JK, J. Org. Chem. 1970, 35, 986 – 989.
-
- Seo S, Taylor JB, Greaney MF, Chem. Commun. 2012, 48, 8270 – 8272. - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources