Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Nov 4:84:e263386.
doi: 10.1590/1519-6984.263386. eCollection 2022.

Fouling resistance investigations of seaweed products

Affiliations
Free article

Fouling resistance investigations of seaweed products

S A Jasim et al. Braz J Biol. .
Free article

Abstract

Any solid, unprotected, and undefended surface in the aquatic environment will be fouled. Fouling, on the other hand, can affect a wide range of species that can tolerate some epibiosis. Several others, on the other hand, aggressively keep the epibionts off their body surface (antifouling). Antifouling defenses are built into marine plants like seaweed and seagrass. They do have a distinctive surface structure with tightly packed needle-like peaks and antifouling coverings, which may hinder settling bacteria's ability to cling. Chemical antifouling resistance is most probably a biological reaction to epibiosis' ecological drawbacks, especially for organisms capable of performing photosynthesis. The goal of this study was to see how effective natural compounds derived from littoral seaweeds were in preventing fouling. The brown mussel, an important fouling organism, was evaluated in laboratory bioassays against fifty-one populations' crude organic extracts including fort-two macroalgae species. Antifouling activity, exhibited a distinct phylogenetic pattern, with red macroalgae having the largest share of active species, subsequently brown macroalgae. Antifouling action in green seaweeds has never been significant. Seven species showed some level of induced antifouling defense. Our findings appear to back up previous findings about secondary metabolite synthesis in seaweeds, indicating that in the hunt for novel antifoulants, researchers should concentrate their efforts on tropical red macroalgae.

PubMed Disclaimer

LinkOut - more resources