Maximum strength and dislocation patterning in multi-principal element alloys
- PMID: 36351027
- PMCID: PMC9645729
- DOI: 10.1126/sciadv.abq7433
Maximum strength and dislocation patterning in multi-principal element alloys
Abstract
Multi-principal element alloys (MPEAs) containing three or more components in high concentrations render a tunable chemical short-range order (SRO). Leveraging large-scale atomistic simulations, we probe the limit of Hall-Petch strengthening and deformation mechanisms in a model CrCoNi alloy and unravel chemical ordering effects. The presence of SRO appreciably increases the maximum strength and lowers the propensity for faulting and structure transformation, accompanied by intensification of planar slip and strain localization. Deformation grains exhibit notably different microstructures and dislocation patterns that prominently depend on their crystallographic orientation and the number of active slip planes. Grain of single-planar slip attains the highest volume fraction of deformation-induced structure transformation, and grain with double-slip planes develops the densest dislocation network. These results advancing the fundamental understanding of deformation mechanisms and dislocation patterning in MPEAs suggest a mechanistic strategy for tuning mechanical behavior through simultaneously tailoring grain texture and local chemical order.
Figures





Similar articles
-
Nanoscale Indentation-Induced Crystal Plasticity in CrCoNi Medium-Entropy Alloys Containing Short-Range Order.Materials (Basel). 2024 Dec 4;17(23):5932. doi: 10.3390/ma17235932. Materials (Basel). 2024. PMID: 39685368 Free PMC article.
-
Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways.Nat Commun. 2019 Aug 8;10(1):3563. doi: 10.1038/s41467-019-11464-7. Nat Commun. 2019. PMID: 31395881 Free PMC article.
-
Investigation of the Micromechanical Behavior of a Ti68Nb7Ta3Zr4Mo18 (at.%) High-Entropy Alloy.Materials (Basel). 2023 Jul 20;16(14):5126. doi: 10.3390/ma16145126. Materials (Basel). 2023. PMID: 37512400 Free PMC article.
-
Recent advances in computational design of structural multi-principal element alloys.iScience. 2023 Aug 28;26(10):107751. doi: 10.1016/j.isci.2023.107751. eCollection 2023 Oct 20. iScience. 2023. PMID: 37727734 Free PMC article. Review.
-
Bidirectional Phase Transformations in Multi-Principal Element Alloys: Mechanisms, Physics, and Mechanical Property Implications.Adv Sci (Weinh). 2024 Oct;11(39):e2407283. doi: 10.1002/advs.202407283. Epub 2024 Aug 19. Adv Sci (Weinh). 2024. PMID: 39158938 Free PMC article. Review.
Cited by
-
Local chemical order enables an ultrastrong and ductile high-entropy alloy in a cryogenic environment.Sci Adv. 2024 Nov 29;10(48):eadq6398. doi: 10.1126/sciadv.adq6398. Epub 2024 Nov 29. Sci Adv. 2024. PMID: 39612326 Free PMC article.
-
Mechanical Response of FeNiCrCoAl High-Entropy Alloys at the Nanoscale: Predictions from Molecular Dynamics.Nanomaterials (Basel). 2025 Apr 25;15(9):652. doi: 10.3390/nano15090652. Nanomaterials (Basel). 2025. PMID: 40358269 Free PMC article.
-
Ubiquitous short-range order in multi-principal element alloys.Nat Commun. 2024 Aug 1;15(1):6486. doi: 10.1038/s41467-024-49606-1. Nat Commun. 2024. PMID: 39090088 Free PMC article.
-
Effects of Cr Content on Microstructure and Mechanical Properties of Co-Free FeCryNiAl0.8 High-Entropy Alloys.Materials (Basel). 2023 Apr 25;16(9):3348. doi: 10.3390/ma16093348. Materials (Basel). 2023. PMID: 37176230 Free PMC article.
-
Divergent evolution of slip banding in CrCoNi alloys.Nat Commun. 2025 Apr 16;16(1):3631. doi: 10.1038/s41467-025-58480-4. Nat Commun. 2025. PMID: 40240359 Free PMC article.
References
-
- Hall E. O., The deformation and ageing of mild steel: III Discussion of results. Proc. Phys. Soc. Sect. B 64, 747–753 (1951).
-
- Petch N. J., The cleavage strength of polycrystals. J. Iron Steel Inst. 174, 25–28 (1953).
-
- Chandross M., Argibay N., Ultimate strength of metals. Phys. Rev. Lett. 124, 125501 (2020). - PubMed
-
- Lu K., Lu K., Lu L., Suresh S., Strengthening materials by boundaries at the nanoscale. Science 349, 349–352 (2009). - PubMed
-
- Yip S., The strongest size. Nature 391, 532–533 (1998).