Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Dec:181:79-87.
doi: 10.1016/j.ejpb.2022.10.023. Epub 2022 Nov 6.

An ocular insert with zero-order extended delivery: Release kinetics and mathematical models

Affiliations
Free article

An ocular insert with zero-order extended delivery: Release kinetics and mathematical models

M Mariz et al. Eur J Pharm Biopharm. 2022 Dec.
Free article

Abstract

Ocular inserts (InEye®), were prepared based on two distinct formulations of PCL-PEG-PCL block copolymers - one with 33 % and the other with 24 % of PEG 600. Ring-open-polymerisation was used to link ε-caprolactone monomers to PEG hydroxyl end-groups. Molecular weight, PCL/PEG ratio, mass loss and swelling of different polymeric samples where determined. Based on the previously prepared block copolymers, ophthalmic inserts were assembled. These were prepared with an ellipsoidal shape by dripping melted polymer over a micro-tablet of moxifloxacin, used as drug model for this study, which therefore became entrapped in a central core coated with a polymer layer that functioned as a control-release barrier. The release kinetics of the model drug revealed a strong dependence on the PEG percentage on the polymer. Inserts' size and the amount of drug immobilized also had an important effect on the drug release profile. All release profiles followed a zero-order pattern, with 95 % of the drug being release at a constant rate. With drug releases varying from 20 to 200 days, and no initial burst, InEye® performance is unique among drug delivery systems and seems to be a very promising new formulation technology for preparing tailor-made ophthalmic inserts for prolonged and constant release of drug, which is needed for chronic diseases such as glaucoma, where compliance to treatment is essential for preventing optic-nerve lesions.

Keywords: Drug delivery; Glaucoma; Ocular insert; Release kinetics.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources