Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Nov 24;58(94):13037-13058.
doi: 10.1039/d2cc05012a.

Thermodynamics of nanocrystal-ligand binding through isothermal titration calorimetry

Affiliations
Review

Thermodynamics of nanocrystal-ligand binding through isothermal titration calorimetry

Andrew B Greytak et al. Chem Commun (Camb). .

Abstract

Manipulations of nanocrystal (NC) surfaces have propelled the applications of colloidal NCs across various fields such as bioimaging, catalysis, electronics, and sensing applications. In this Feature Article, we discuss the surface chemistry of colloidal NCs, with an emphasis on semiconductor quantum dots, and the binding motifs for various ligands that coordinate NC surfaces. We present isothermal titration calorimetry (ITC) as a viable technique for studying the thermodynamics of the ligand association and exchange at NC surfaces by discussing its principles of operation and highlighting results obtained to date. We give an in-depth description of various thermodynamic models that can be used to interpret NC-ligand interactions as measured not only by ITC, but also by NMR, fluorescence quenching, and fluorescence anisotropy techniques. Understanding the complexity of NC surface-ligand interactions can provide a wide range of avenues to tune their properties for desired applications.

PubMed Disclaimer

LinkOut - more resources