Siderophore-Linked Ruthenium Catalysts for Targeted Allyl Ester Prodrug Activation within Bacterial Cells
- PMID: 36355416
- PMCID: PMC10108276
- DOI: 10.1002/chem.202202536
Siderophore-Linked Ruthenium Catalysts for Targeted Allyl Ester Prodrug Activation within Bacterial Cells
Abstract
Due to rising resistance, new antibacterial strategies are needed, including methods for targeted antibiotic release. As targeting vectors, chelating molecules called siderophores that are released by bacteria to acquire iron have been investigated for conjugation to antibacterials, leading to the clinically approved drug cefiderocol. The use of small-molecule catalysts for prodrug activation within cells has shown promise in recent years, and here we investigate siderophore-linked ruthenium catalysts for the activation of antibacterial prodrugs within cells. Moxifloxacin-based prodrugs were synthesised, and their catalyst-mediated activation was demonstrated under anaerobic, biologically relevant conditions. In the absence of catalyst, decreased antibacterial activities were observed compared to moxifloxacin versus Escherichia coli K12 (BW25113). A series of siderophore-linked ruthenium catalysts were investigated for prodrug activation, all of which displayed a combinative antibacterial effect with the prodrug, whereas a representative example displayed little toxicity against mammalian cell lines. By employing complementary bacterial growth assays, conjugates containing siderophore units based on catechol and azotochelin were found to be most promising for intracellular prodrug activation.
Keywords: antibacterials; bio-orthogonal; catalysts; prodrugs; siderophores.
© 2022 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH.
Conflict of interest statement
The authors declare no conflict of interest.
Figures















Similar articles
-
Species selectivity of new siderophore-drug conjugates that use specific iron uptake for entry into bacteria.Antimicrob Agents Chemother. 1996 Nov;40(11):2610-7. doi: 10.1128/AAC.40.11.2610. Antimicrob Agents Chemother. 1996. PMID: 8913474 Free PMC article.
-
Heavy-Metal Trojan Horse: Enterobactin-Directed Delivery of Platinum(IV) Prodrugs to Escherichia coli.J Am Chem Soc. 2022 Jul 20;144(28):12756-12768. doi: 10.1021/jacs.2c03324. Epub 2022 Jul 8. J Am Chem Soc. 2022. PMID: 35803281 Free PMC article.
-
Plant-Derived Catechols Are Substrates of TonB-Dependent Transporters and Sensitize Pseudomonas aeruginosa to Siderophore-Drug Conjugates.mBio. 2022 Aug 30;13(4):e0149822. doi: 10.1128/mbio.01498-22. Epub 2022 Jun 30. mBio. 2022. PMID: 35770947 Free PMC article.
-
Siderophore-Antibiotic Conjugate Design: New Drugs for Bad Bugs?Molecules. 2019 Sep 11;24(18):3314. doi: 10.3390/molecules24183314. Molecules. 2019. PMID: 31514464 Free PMC article. Review.
-
Location, Location, Location: Establishing Design Principles for New Antibacterials from Ferric Siderophore Transport Systems.Molecules. 2024 Aug 16;29(16):3889. doi: 10.3390/molecules29163889. Molecules. 2024. PMID: 39202968 Free PMC article. Review.
Cited by
-
Fluorescent probes for investigating the internalisation and action of bioorthogonal ruthenium catalysts within Gram-positive bacteria.RSC Chem Biol. 2024 Oct 15;5(12):1201-13. doi: 10.1039/d4cb00187g. Online ahead of print. RSC Chem Biol. 2024. PMID: 39421717 Free PMC article.
-
Antibacterial Prodrugs to Overcome Bacterial Antimicrobial Resistance.Pharmaceuticals (Basel). 2024 Jun 1;17(6):718. doi: 10.3390/ph17060718. Pharmaceuticals (Basel). 2024. PMID: 38931385 Free PMC article. Review.
-
Siderophores: A Case Study in Translational Chemical Biology.Biochemistry. 2024 Aug 6;63(15):1877-1891. doi: 10.1021/acs.biochem.4c00276. Epub 2024 Jul 23. Biochemistry. 2024. PMID: 39041827 Free PMC article. Review.
-
A ratiometric substrate for rapid evaluation of transfer hydrogenation efficiency in solution.Dalton Trans. 2024 May 28;53(21):8887-8892. doi: 10.1039/d4dt00891j. Dalton Trans. 2024. PMID: 38757518 Free PMC article.
-
Siderophore conjugates to combat antibiotic-resistant bacteria.RSC Med Chem. 2023 Mar 1;14(5):800-822. doi: 10.1039/d2md00465h. eCollection 2023 May 25. RSC Med Chem. 2023. PMID: 37252105 Free PMC article. Review.
References
-
- Rebelein J. G., Ward T. R., Curr. Opin. Biotechnol. 2018, 53, 106–114; - PubMed
- Ngo A. H., Bose S., Do L. H., Chem. Eur. J. 2018, 24, 10584–10594; - PubMed
- Martínez-Calvo M., Mascareñas J. L., Coord. Chem. Rev. 2018, 359, 57–79;
- van de L'Isle M. O. N., Ortega-Liebana M. C., Unciti-Broceta A., Curr. Opin. Chem. Biol. 2021, 61, 32–42; - PubMed
- Destito P., Vidal C., López F., Mascareñas J. L., Chem. Eur. J. 2021, 27, 4789–4816. - PubMed
-
- Völker T., Dempwolff F., Graumann P. L., Meggers E., Angew. Chem. Int. Ed. 2014, 53, 10536–10540; - PubMed
- Angew. Chem. 2014, 126, 10705–10710.
-
- Völker T., Meggers E., ChemBioChem 2017, 18, 1083–1086. - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials