Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jan 15:225:286-297.
doi: 10.1016/j.ijbiomac.2022.11.015. Epub 2022 Nov 8.

Characterization of a bioscaffold containing polysaccharide acemannan and native collagen for pulp tissue regeneration

Affiliations

Characterization of a bioscaffold containing polysaccharide acemannan and native collagen for pulp tissue regeneration

Aye Aye Thant et al. Int J Biol Macromol. .

Abstract

Dental pulp regeneration exploits tissue engineering concepts using stem cells/scaffolds/growth-factors. Extracted collagen is commonly used as a biomaterial-scaffold due to its biocompatibility/biodegradability and mimics the natural extracellular matrix. Adding biomolecules into a collagen-scaffold enhanced pulp regeneration. Acemannan, β-(1-4)-acetylated-polymannose, is a polysaccharide extracted from aloe vera. Acemannan is a regenerative biomaterial. Therefore, acemannan could be a biomolecule in a collagen-scaffold. Here, acemannan and native collagen were obtained and characterized. The AceCol-scaffold's physical properties were investigated using FTIR, SEM, contact angle, swelling, pore size, porosity, compressive modulus, and degradation assays. The AceCol-scaffold's biocompatibility, growth factor secretion, osteogenic protein expression, and calcification were evaluated in vitro. The AceCol-scaffolds demonstrated higher hydrophilicity, swelling, porosity, and larger pore size than the collagen scaffolds (p < 0.05). Better cell-cell and cell-scaffold adhesion, and dentin extracellular matrix protein (BSP/OPN/DSPP) expression were observed in the AceCol-scaffold, however, DSPP expression was not detected in the collagen group. Significantly increased cellular proliferation, VEGF and BMP2 expression, and mineralization were detected in the AceCol-scaffold compared with the collagen-scaffold (p < 0.05). Computer simulation revealed that acemannan's 3D structure changes to bind with collagen. In conclusion, the AceCol-scaffold synergistically provides better physical and biological properties than collagen. The AceCol-scaffold is a promising material for tissue regeneration.

Keywords: Aloe vera; Collagen; Scaffolds; Simulation model; Tissue engineering.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources