Blood shifts between body compartments during submaximal exercise with induced expiratory flow limitation in healthy humans
- PMID: 36367253
- DOI: 10.1113/JP283176
Blood shifts between body compartments during submaximal exercise with induced expiratory flow limitation in healthy humans
Abstract
External expiratory flow limitation (EFLe) can be applied in healthy subjects to mimic the effects of chronic obstructive pulmonary disease during exercise. At maximal exercise intensity, EFLe leads to exercise intolerance owing to respiratory pump dysfunction limiting venous return. We quantified blood shifts between body compartments to determine whether such effects can be observed during submaximal exercise, when the load on the respiratory system is milder. Ten healthy men (25.2 ± 3.2 years of age, 177.3 ± 5.4 cm in height and weighing 67.4 ± 5.8 kg) exercised at 100 W (∼40% of maximal oxygen uptake) while breathing spontaneously (CTRL) or with EFLe. We measured respiratory dynamics with optoelectronic plethysmography, oesophageal (Pes ) and gastric (Pga ) pressures with balloon catheters, and blood shifting between body compartments with double body plethysmography. During exercise, EFLe resulted in the following changes: (i) greater intrabreath blood shifts between the trunk and the extremities [518 ± 221 (EFLe) vs. 224 ± 60 ml (CTRL); P < 0.001] associated with lower Pes during inspiration (r = 0.53, P < 0.001) and higher Pga during expiration (r = 0.29, P < 0.024); and (ii) a progressive pooling of blood in the trunk over time (∼700 ml after 3 min of exercise; P < 0.05), explained by a predominant effect of lower inspiratory Pes (r = 0.54, P < 0.001) over that of increased Pga . It follows that during submaximal exercise, EFLe amplifies the respiratory pump mechanism, with a prevailing contribution from lower inspiratory Pes over increased expiratory Pga , drawing blood into the trunk. Whether these results can be replicated in chronic obstructive pulmonary disease patients remains to be determined. KEY POINTS: External expiratory flow limitation (EFLe) can be applied in healthy subjects to mimic the effects of chronic obstructive pulmonary disease and safely study the mechanisms of exercise intolerance associated with the disease. At maximal exercise intensity with EFLe, exercise intolerance results from high expiratory pressures altering the respiratory pump mechanism and limiting venous return. We used double body plethysmography to quantify blood shifting between the trunk and the extremities and to examine whether the same effects occur with EFLe at submaximal exercise intensity, where the increase in expiratory pressures is milder. Our data show that during submaximal exercise, EFLe amplifies the respiratory pump mechanism, each breath producing greater blood displacements between the trunk and the extremities, with a prevailing effect from lower inspiratory intrathoracic pressure progressively drawing blood into the trunk. These results help us to understand the haemodynamic effects of respiratory pressures during submaximal exercise with expiratory flow restriction.
Keywords: exercise; expiratory flow limitation; respiratory pump; venous return.
© 2022 The Authors. The Journal of Physiology © 2022 The Physiological Society.
Comment in
-
Expiratory flow limitation during exercise: why does it 'suck' so much?J Physiol. 2023 Jan;601(1):7-8. doi: 10.1113/JP284068. Epub 2022 Dec 13. J Physiol. 2023. PMID: 36461666 Free PMC article. No abstract available.
-
A game of chest: Where does blood volume shift?J Physiol. 2023 Mar;601(5):881-882. doi: 10.1113/JP284136. Epub 2023 Feb 7. J Physiol. 2023. PMID: 36651640 No abstract available.
References
-
- Alexander, R. S. (1951). Influence of the diaphragm upon portal blood flow and venous return. American Journal of Physiology, 167(3), 738-748.
-
- Aliverti, A., Bovio, D., Fullin, I., Dellacà, R. L., Lo Mauro, A., Pedotti, A., & Macklem, P. T. (2009). The abdominal circulatory pump. Plos One, 4(5), e5550.
-
- Aliverti, A., Dellacà, R. L., Lotti, P., Bertini, S., Duranti, R., Scano, G., Heyman, J., lo Mauro, A., Pedotti, A., & Macklem, P. T. (2005). Influence of expiratory flow-limitation during exercise on systemic oxygen delivery in humans. European Journal of Applied Physiology, 95(2-3), 229-242.
-
- Aliverti, A., Iandelli, I., Duranti, R., Cala, S. J., Kayser, B., Kelly, S., Misuri, G., Pedotti, A., Scano, G., Sliwinski, P., Yan, S., & Macklem, P. T. (2002). Respiratory muscle dynamics and control during exercise with externally imposed expiratory flow limitation. Journal of Applied Physiology, 92(5), 1953-1963.
-
- Aliverti, A., Kayser, B., & Macklem, P. T. (2004). Breath-by-breath assessment of alveolar gas stores and exchange. Journal of Applied Physiology, 96(4), 1464-1469.
MeSH terms
LinkOut - more resources
Full Text Sources
Medical