Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Nov 11;22(1):133.
doi: 10.1186/s12862-022-02090-x.

Host-plant adaptation as a driver of incipient speciation in the fall armyworm (Spodoptera frugiperda)

Affiliations

Host-plant adaptation as a driver of incipient speciation in the fall armyworm (Spodoptera frugiperda)

Estelle Fiteni et al. BMC Ecol Evol. .

Abstract

Background: Divergent selection on host-plants is one of the main evolutionary forces driving ecological speciation in phytophagous insects. The ecological speciation might be challenging in the presence of gene flow and assortative mating because the direction of divergence is not necessarily the same between ecological selection (through host-plant adaptation) and assortative mating. The fall armyworm (FAW), a major lepidopteran pest species, is composed of two sympatric strains, corn and rice strains, named after two of their preferred host-plants. These two strains have been hypothesized to undergo incipient speciation, based on (i) several lines of evidence encompassing both pre- and post-zygotic reproductive isolation, and (ii) the presence of a substantial level of genetic differentiation. Even though the status of these two strains has been established a long time ago, it is still yet to be found whether these two strains indeed exhibit a marked level of genetic differentiation from a large number of genomic loci. Here, we analyzed whole genome sequences from 56 FAW individuals either collected from pasture grasses (a part of the favored host range of the rice strain) or corn to assess the role of host-plant adaptation in incipient speciation.

Results: Principal component analysis of whole genome data shows that the pattern of divergence in the fall armyworm is predominantly explained by the genetic differentiation associated with host-plants. The level of genetic differentiation between corn and rice strains is particularly marked in the Z chromosome. We identified one autosomal locus and two Z chromosome loci targeted by selective sweeps specific to rice strain and corn strain, respectively. The autosomal locus has both increased DXY and FST while the Z chromosome loci had decreased DXY and increased FST.

Conclusion: These results show that the FAW population structure is dominated by the genetic differentiation between corn and rice strains. This differentiation involves divergent selection targeting at least three loci, which include a locus potentially causing reproductive isolation. Taken together, these results suggest the evolutionary scenario that host-plant speciation is a driver of incipient speciation in the fall armyworm.

Keywords: Fall armyworm; Host-plant adaptation; Incipient speciation; Speciation with gene flow; Spodoptera frugiperda.

PubMed Disclaimer

Conflict of interest statement

We have no conflict of interest to declare.

Figures

Fig. 1
Fig. 1
Genetic differentiation between host-plants and strains. Principal component analysis from A whole nuclear genome, B the Z chromosome, and C autosomes. TPI-sfC and TPI-sfR represent strains identified from the TPI marker. The red and blue points indicate samples collected from corn fields and pasture grasses, respectively
Fig. 2
Fig. 2
Genetic differentiation between groups in the FAW. A FST was calculated between the corn group and the grass group. (left) The histogram shows FST calculated from random groups. The red vertical bar indicates FST calculated between the corn group and the grass group. (middle) FST calculated in 500 kb windows was shown for each chromosome. (right) The histogram of FST was calculated in 500 kb windows. The black vertical bar indicates FST = 0. B FST was calculated between two groups with different mitochondrial markers within the corn group. Please note that A and B have different ranges of FST in the rightmost panels
Fig. 3
Fig. 3
Selectively targeted loci. The composite likelihood of selective sweep along the genome was calculated from the corn or grass group. Obvious outliers of likelihood were indicated by asterisks
Fig. 4
Fig. 4
Loci under divergent selective sweeps. DXY (upper) and FST (lower) were calculated from the targets of selective sweep specific to the grass group (the red rectangles) and the corn group (the blue rectangles)
Fig. 5
Fig. 5
An evolutionary scenario of speciation in the fall armyworm. (i) Divergence selection on a locus on chromosome 12 caused reproductive isolation by reducing gene flow between ancestral corn and grass groups. The ancestral corn group experienced divergent selection on the Z chromosome as well. As a consequence, the corn group (sfC) and the grass group (sfR) had differentiated ranges of host-plants. (ii) Evolutionary forces split the corn group (sfC) into two sub-groups, mt-A and mt-B, with different mitochondrial markers

References

    1. Nosil P, Crespi BJ, Sandoval CP. Host-plant adaptation drives the parallel evolution of reproductive isolation. Nature. 2002;417:440–443. - PubMed
    1. Gloss AD, Abbot P, Whiteman NK. How interactions with plant chemicals shape insect genomes. Curr Opin Insect Sci. 2019;36:149–156. - PMC - PubMed
    1. Simon J-C, d’Alençon E, Guy E, Jacquin-Joly E, Jaquiéry J, Nouhaud P, et al. Genomics of adaptation to host-plants in herbivorous insects. Brief Funct Genomics. 2015;14:413–423. - PubMed
    1. Fischer HM, Wheat CW, Heckel DG, Vogel H. Evolutionary origins of a novel host plant detoxification gene in butterflies. Mol Biol Evol. 2008;25:809–820. - PubMed
    1. Smadja C, Shi P, Butlin RK, Robertson HM. Large gene family expansions and adaptive evolution for odorant and gustatory receptors in the Pea Aphid, Acyrthosiphon pisum. Mol Biol Evol. 2009;26:2073–2086. - PubMed

Publication types

LinkOut - more resources