RaMP-DB 2.0: a renovated knowledgebase for deriving biological and chemical insight from metabolites, proteins, and genes
- PMID: 36373969
- PMCID: PMC9825745
- DOI: 10.1093/bioinformatics/btac726
RaMP-DB 2.0: a renovated knowledgebase for deriving biological and chemical insight from metabolites, proteins, and genes
Abstract
Motivation: Functional interpretation of high-throughput metabolomic and transcriptomic results is a crucial step in generating insight from experimental data. However, pathway and functional information for genes and metabolites are distributed among many siloed resources, limiting the scope of analyses that rely on a single knowledge source.
Results: RaMP-DB 2.0 is a web interface, relational database, API and R package designed for straightforward and comprehensive functional interpretation of metabolomic and multi-omic data. RaMP-DB 2.0 has been upgraded with an expanded breadth and depth of functional and chemical annotations (ClassyFire, LIPID MAPS, SMILES, InChIs, etc.), with new data types related to metabolites and lipids incorporated. To streamline entity resolution across multiple source databases, we have implemented a new semi-automated process, thereby lessening the burden of harmonization and supporting more frequent updates. The associated RaMP-DB 2.0 R package now supports queries on pathways, common reactions (e.g. metabolite-enzyme relationship), chemical functional ontologies, chemical classes and chemical structures, as well as enrichment analyses on pathways (multi-omic) and chemical classes. Lastly, the RaMP-DB web interface has been completely redesigned using the Angular framework.
Availability and implementation: The code used to build all components of RaMP-DB 2.0 are freely available on GitHub at https://github.com/ncats/ramp-db, https://github.com/ncats/RaMP-Client/ and https://github.com/ncats/RaMP-Backend. The RaMP-DB web application can be accessed at https://rampdb.nih.gov/.
Supplementary information: Supplementary data are available at Bioinformatics online.
Published by Oxford University Press 2022.
Figures
References
-
- Benjamini Y., Hochberg Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B, 57, 289–300.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous
