Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Sep-Oct;20(5):2681-2689.
doi: 10.1109/TCBB.2022.3221736. Epub 2023 Oct 9.

MAGCN: A Multiple Attention Graph Convolution Networks for Predicting Synthetic Lethality

MAGCN: A Multiple Attention Graph Convolution Networks for Predicting Synthetic Lethality

Xinguo Lu et al. IEEE/ACM Trans Comput Biol Bioinform. 2023 Sep-Oct.

Abstract

Synthetic lethality (SL) is a potential cancer therapeutic strategy and drug discovery. Computational approaches to identify synthetic lethality genes have become an effective complement to wet experiments which are time consuming and costly. Graph convolutional networks (GCN) has been utilized to such prediction task as be good at capturing the neighborhood dependency in a graph. However, it is still a lack of the mechanism of aggregating the complementary neighboring information from various heterogeneous graphs. Here, we propose the Multiple Attention Graph Convolution Networks for predicting synthetic lethality (MAGCN). First, we obtain the functional similarity features and topological structure features of genes from different data sources respectively, such as Gene Ontology data and Protein-Protein Interaction. Then, graph convolutional network is utilized to accumulate the knowledge from neighbor nodes according to synthetic lethal associations. Meanwhile, we propose a multiple graphs attention model and construct a multiple graphs attention network to learn the contribution factors of different graphs to generate embedded representation by aggregating these graphs. Finally, the generated feature matrix is decoded to predict potential synthetic lethal interaction. Experimental results show that MAGCN is superior to other baseline methods. Case study demonstrates the ability of MAGCN to predict human SL gene pairs.

PubMed Disclaimer