Unsupervised machine learning methods and emerging applications in healthcare
- PMID: 36378293
- DOI: 10.1007/s00167-022-07233-7
Unsupervised machine learning methods and emerging applications in healthcare
Abstract
Unsupervised machine learning methods are important analytical tools that can facilitate the analysis and interpretation of high-dimensional data. Unsupervised machine learning methods identify latent patterns and hidden structures in high-dimensional data and can help simplify complex datasets. This article provides an overview of key unsupervised machine learning techniques including K-means clustering, hierarchical clustering, principal component analysis, and factor analysis. With a deeper understanding of these analytical tools, unsupervised machine learning methods can be incorporated into health sciences research to identify novel risk factors, improve prevention strategies, and facilitate delivery of personalized therapies and targeted patient care.Level of evidence: I.
Keywords: Analytics; Artificial intelligence; Computational models; Editorial; Machine learning.
© 2022. The Author(s) under exclusive licence to European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA).
Similar articles
-
Unsupervised learning for medical data: A review of probabilistic factorization methods.Stat Med. 2023 Dec 30;42(30):5541-5554. doi: 10.1002/sim.9924. Epub 2023 Oct 18. Stat Med. 2023. PMID: 37850249 Review.
-
Pharmacophenotype identification of intensive care unit medications using unsupervised cluster analysis of the ICURx common data model.Crit Care. 2023 May 2;27(1):167. doi: 10.1186/s13054-023-04437-2. Crit Care. 2023. PMID: 37131200 Free PMC article.
-
Sheep's coping style can be identified by unsupervised machine learning from unlabeled data.Behav Processes. 2022 Jan;194:104559. doi: 10.1016/j.beproc.2021.104559. Epub 2021 Nov 25. Behav Processes. 2022. PMID: 34838901
-
Uncovering hidden subtypes in dementia: An unsupervised machine learning approach to dementia diagnosis and personalization of care.J Biomed Inform. 2025 May;165:104799. doi: 10.1016/j.jbi.2025.104799. Epub 2025 Mar 19. J Biomed Inform. 2025. PMID: 40118356
-
A Comprehensive Review on Machine Learning in Healthcare Industry: Classification, Restrictions, Opportunities and Challenges.Sensors (Basel). 2023 Apr 22;23(9):4178. doi: 10.3390/s23094178. Sensors (Basel). 2023. PMID: 37177382 Free PMC article. Review.
Cited by
-
Diagnostic performance of deep learning for leg length measurements on radiographs in leg length discrepancy: A systematic review.J Exp Orthop. 2024 Nov 10;11(4):e70080. doi: 10.1002/jeo2.70080. eCollection 2024 Oct. J Exp Orthop. 2024. PMID: 39530113 Free PMC article.
-
Digital health delivery in respiratory medicine: adjunct, replacement or cause for division?Eur Respir Rev. 2024 Sep 25;33(173):230251. doi: 10.1183/16000617.0251-2023. Print 2024 Jul. Eur Respir Rev. 2024. PMID: 39322260 Free PMC article. Review.
-
Democratizing cheminformatics: interpretable chemical grouping using an automated KNIME workflow.J Cheminform. 2024 Aug 16;16(1):101. doi: 10.1186/s13321-024-00894-1. J Cheminform. 2024. PMID: 39152469 Free PMC article.
-
Integrating Wearable Sensor Signal Processing with Unsupervised Learning Methods for Tremor Classification in Parkinson's Disease.Bioengineering (Basel). 2025 Jan 6;12(1):37. doi: 10.3390/bioengineering12010037. Bioengineering (Basel). 2025. PMID: 39851311 Free PMC article.
-
Mapping the reporting practices in recent randomised controlled trials published in Knee Surgery, Sports Traumatology, Arthroscopy: A scoping review of methodological quality.J Exp Orthop. 2025 Jan 7;12(1):e70117. doi: 10.1002/jeo2.70117. eCollection 2025 Jan. J Exp Orthop. 2025. PMID: 39776837 Free PMC article.
References
-
- Altman NKM (2017) Clustering. Nat Methods 14:545–546 - DOI
-
- Angelini F, Widera P, Mobasheri A, Blair J, Struglics A, Uebelhoer M et al (2022) Osteoarthritis endotype discovery via clustering of biochemical marker data. Ann Rheum Dis 81:666–675 - DOI
-
- Bastanlar Y, Ozuysal M (2014) Introduction to machine learning. Methods Mol Biol 1107:105–128 - DOI
-
- Cadima J, Cerdeira JO, Minhoto M (2004) Computational aspects of algorithms for variable selection in the context of principal components. Comput Stat Data Anal 47:225–236 - DOI
-
- Davenport T, Kalakota R (2019) The potential for artificial intelligence in healthcare. Future Healthc J 6:94–98 - DOI
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical