Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Sep 22;13(42):12382-12388.
doi: 10.1039/d2sc01869a. eCollection 2022 Nov 2.

Air and water stable germacarbonyl compounds

Affiliations

Air and water stable germacarbonyl compounds

Pritam Mahawar et al. Chem Sci. .

Abstract

Germacarbonyl compounds are the germanium analogs of carbonyl compounds requiring an inert atmosphere for stability. Making these compounds survive the ambient conditions was not feasible given the lability of the Ge[double bond, length as m-dash]E bonds (E = O, S, Se, Te). However, the first examples of germacarbonyl compounds synthesized under ambient conditions by taking advantage of dipyrromethene ligand stabilization are detailed here; the isolated compounds are thiogermanone 3, selenogermanone 4, thiogermacarboxylic acid 6, selenogermacarboxylic acid 7, thiogermaester 9, selenogermaester 10, thiogermaamide 12, and selenogermaamide 13 with Ge[double bond, length as m-dash]E bonds (E = S, Se). Compounds 12 and 13 can react under atmospheric conditions with copper(i) halides offering air and water stable monomeric 14-15 and dimeric 16-19 copper(i) complexes (halide = Cl, Br, I). Apart from just binding, selectivity was also observed; thiogermaamide 12 and selenogermaamide 13 bind CuCl and CuBr, respectively, when treated with a mixture of copper(i) halides.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Chart 1
Chart 1. Examples of heavy ketones.
Scheme 1
Scheme 1. Synthesis of germacarbonyl compounds.
Scheme 2
Scheme 2. Selective complexation of thiogermaamide 12 and selenogermaamide 13 with CuCl and CuBr, respectively.
Fig. 1
Fig. 1. The molecular structure of thiogermaamide stabilized copper(i) chloride complex 14 with thermal ellipsoids at a 40% probability level. All hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (deg): Ge(1)–S(1) 2.132(7), Ge(1)–N(1) 1.934(1), Ge(1)–N(2) 1.938(1), Ge(1)–N(3) 1.831(1), S(1)–Cu(1) 2.143(8), Cu(1)–Cl(1) 2.087(2); N(3)–Ge(1)–N(1) 112.2(5), N(3)–Ge(1)–N(2) 112.0(5), N(1)–Ge(1)–N(2) 96.6(4), N(3)–Ge(1)–S(1) 116.30(4), and S(1)–Cu(1)–Cl(1) 178.04(2). Data collection temperature: 100 K.
Fig. 2
Fig. 2. The molecular structure of selenogermaamide stabilized copper(i) iodide complex 19 with thermal ellipsoids at the 50% probability level. All hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (deg): Ge(1)–Se(1) 2.234(6), Ge(1)–N(1) 1.928(2), Ge(1)–N(2) 1.931(3), Ge(1)–N(3) 1.853(3), Se(1)–Cu(1) 2.349(5), Cu(1)–I(1) 2.566(5), Cu(1)–I(1) 2.632(4), Cu1–Cu1 2.581(8); N(3)–Ge(1)–N(1) 110.98(2), N(3)–Ge(1)–N(2) 105.98(2), N(1)–Ge(1)–N(2) 94.50 (1), Ge(1)–Se(1)–Cu(1) 102.18(2), I(1)–Cu(1)–I(1) 120.47(2), and Se(1)–Cu(1)–I(1) 133.05(2). Data collection temperature: 100 K.

References

    1. For examples, see,

    2. Loh Y. K. Aldridge S. Angew. Chem., Int. Ed. 2021;60:8626–8648. doi: 10.1002/anie.202008174. - DOI - PMC - PubMed
    3. Hanft A. Lichtenberg C. Eur. J. Inorg. Chem. 2018:3361–3373. doi: 10.1002/ejic.201800465. - DOI
    4. Xiong Y. Yao S. Driess M. Angew. Chem., Int. Ed. 2013;52:4302–4311. doi: 10.1002/anie.201209766. - DOI - PubMed
    5. Asay M. Jones C. Driess M. Chem. Rev. 2011;111:354–396. doi: 10.1021/cr100216y. - DOI - PubMed
    6. Fischer R. C. Power P. P. Chem. Rev. 2010;110:3877–3923. doi: 10.1021/cr100133q. - DOI - PubMed
    7. Mizuhata Y. Sasamori T. Tokitoh N. Chem. Rev. 2009;109:3479–3511. doi: 10.1021/cr900093s. - DOI - PubMed
    8. Nagendran S. Roesky H. W. Organometallics. 2008;27:457–492. doi: 10.1021/om7007869. - DOI
    9. Okazaki R. Tokitoh N. Acc. Chem. Res. 2000;33:625–630. doi: 10.1021/ar980073b. - DOI - PubMed
    10. Power P. P. Chem. Rev. 1999;99:3463–3503. doi: 10.1021/cr9408989. - DOI - PubMed
    11. Kuchta M. C. Parkin G. Coord. Chem. Rev. 1998;176:323–372. doi: 10.1016/S0010-8545(98)00123-4. - DOI
    1. Xiong Y. Yao S. Driess M. J. Am. Chem. Soc. 2009;131:7562–7563. doi: 10.1021/ja9031049. - DOI - PubMed
    2. Yao S. Xiong Y. Driess M. Chem. Commun. 2009:6466–6468. doi: 10.1039/B914060C. - DOI - PubMed
    3. Arya P. Boyer J. Carr F. Corriu R. Lanneau G. Lapasset J. Perrot M. Priou C. Angew. Chem., Int. Ed. 1989;28:1016–1018. doi: 10.1002/anie.198910161. - DOI
    4. Tokitoh N. Matsumoto T. Manmaru K. Okazaki R. J. Am. Chem. Soc. 1993;115:8855–8856. doi: 10.1021/ja00072a055. - DOI
    5. Matsumoto T. Tokitoh N. Okazaki R. Angew. Chem., Int. Ed. 1994;33:2316–2317. doi: 10.1002/anie.199423161. - DOI
    6. Tokitoh N. Matsumoto T. Okazaki R. J. Am. Chem. Soc. 1997;119:2337–2338. doi: 10.1021/ja963517c. - DOI
    7. Saito M. Tokitoh N. Okazaki R. J. Am. Chem. Soc. 2004;126:15572–15582. doi: 10.1021/ja048453h. - DOI - PubMed
    8. Leung W.-P. Kwok W.-H. Law L. T. C. Zhou Z.-Y. Mak T. C. W. Chem. Commun. 1996:505–506. doi: 10.1039/CC9960000505. - DOI
    1. Parvin N. Sen N. Muhasina P. V. Tothadi S. Parameswaran P. Khan S. Chem. Commun. 2021;57:5008–5011. doi: 10.1039/D1CC01034D. - DOI - PubMed
    2. Zhao X. Szilvási T. Hanusch F. Inoue S. Chem.–Eur. J. 2021:1–5. - PMC - PubMed
    3. Sarkar D. Weetman C. Dutta S. Schubert E. Jandl C. Koley D. Inoue S. J. Am. Chem. Soc. 2020;142:15403–15411. doi: 10.1021/jacs.0c06287. - DOI - PubMed
    4. Parvin N. Pal S. Khan S. Das S. Pati S. K. Roesky H. W. Inorg. Chem. 2017;56:1706–1712. doi: 10.1021/acs.inorgchem.6b02833. - DOI - PubMed
    5. Alvarado-Beltran I. Rosas-Sánchez A. Baceiredo A. Saffon-Merceron N. Branchadell V. Kato T. Angew. Chem., Int. Ed. 2017;56:10481–10485. doi: 10.1002/anie.201705644. - DOI - PubMed
    6. Siwatch R. K. Karwasara S. Sharma M. K. Mondal S. Mukherjee G. Rajaraman G. Nagendran S. Organometallics. 2016;35:429–438. doi: 10.1021/acs.organomet.5b00643. - DOI
    7. Karwasara S. Yadav D. Jha C. K. Rajaraman G. Nagendran S. Chem. Commun. 2015;51:4310–4313. doi: 10.1039/C5CC00169B. - DOI - PubMed
    8. Li B. Li Y. Zhao N. Chen Y. Chen Y. Fu G. Zhu H. Ding Y. Dalton Trans. 2014;43:12100–12108. doi: 10.1039/C4DT00937A. - DOI - PubMed
    9. Yadav D. Siwatch R. K. Mukherjee G. Rajaraman G. Nagendran S. Inorg. Chem. 2014;53:10054–10059. doi: 10.1021/ic5008389. - DOI - PubMed
    10. Siwatch R. K. Yadav D. Mukherjee G. Rajaraman G. Nagendran S. Inorg. Chem. 2014;53:5073–5079. doi: 10.1021/ic500116f. - DOI - PubMed
    11. Filippou A. C. Baars B. Chernov O. Lebedev Y. N. Schnakenburg G. Angew. Chem., Int. Ed. 2014;53:565–570. doi: 10.1002/anie.201308433. - DOI - PubMed
    12. Sinhababu S. Siwatch R. K. Mukherjee G. Rajaraman G. Nagendran S. Inorg. Chem. 2012;51:9240–9248. doi: 10.1021/ic300715y. - DOI - PubMed
    13. Siwatch R. K. Nagendran S. Organometallics. 2012;31:3389–3394. doi: 10.1021/om300173s. - DOI
    14. Li L. Fukawa T. Matsuo T. Hashizume D. Fueno H. Tanaka K. Tamao K. Nat. Chem. 2012;4:361–365. doi: 10.1038/nchem.1305. - DOI - PubMed
    15. Kirchmann M. Gädt T. Schappacher F. M. Pöttgen R. Weigend F. Wesemann L. Dalton Trans. 2009:1055–1062. doi: 10.1039/B814936D. - DOI - PubMed
    16. Leung W.-P. Chong K.-H. Wu Y.-S. So C.-W. Chan H.-S. Mak T. C. W. Eur. J. Inorg. Chem. 2006;2006:808–812. doi: 10.1002/ejic.200500717. - DOI
    17. Iwamoto T. Sato K. Ishida S. Kabuto C. Kira M. J. Am. Chem. Soc. 2006;128:16914–16920. doi: 10.1021/ja065774f. - DOI - PubMed
    18. Saur I. Rima G. Gornitzka H. Miqueu K. Barrau J. Organometallics. 2003;22:1106–1109. doi: 10.1021/om0208974. - DOI
    19. Foley S. R. Yap G. P. A. Richeson D. S. J. Chem. Soc., Dalton Trans. 2000:1663–1668. doi: 10.1039/A909228E. - DOI
    1. Mahawar P. Wasson M. K. Sharma M. K. Jha C. K. Mukherjee G. Vivekanandan P. Nagendran S. Angew. Chem., Int. Ed. 2020;59:21377–21381. doi: 10.1002/anie.202004551. - DOI - PubMed
    2. Jha C. K. Karwasara S. Nagendran S. Chem.–Eur. J. 2014;20:10240–10244. doi: 10.1002/chem.201403598. - DOI - PubMed
    3. Sinhababu S. Yadav D. Karwasara S. Sharma M. K. Mukherjee G. Rajaraman G. Nagendran S. Angew. Chem., Int. Ed. 2016;55:7742–7746. doi: 10.1002/anie.201601445. - DOI - PubMed
    4. Sharma M. K. Sinhababu S. Mahawar P. Mukherjee G. Pandey B. Rajaraman G. Nagendran S. Chem. Sci. 2019;10:4402–4411. doi: 10.1039/C8SC05380D. - DOI - PMC - PubMed
    1. For examples, see,

    2. Yadav S. Kumar R. Raj K. V. Yadav P. Vanka K. Sen S. S. Chem.–Asian J. 2020;15:3116–3121. doi: 10.1002/asia.202000807. - DOI - PubMed
    3. Sinhababu S. Sharma M. K. Mahawar P. Kaur S. Singh V. K. Paliwal A. Yadav D. Kashyap H. K. Nagendran S. Dalton Trans. 2019;48:16366–16376. doi: 10.1039/C8DT04589E. - DOI - PubMed