Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Sep 21;13(42):12533-12539.
doi: 10.1039/d2sc03937k. eCollection 2022 Nov 2.

A bis-NHC-CAAC dimer derived dicationic diradical

Affiliations

A bis-NHC-CAAC dimer derived dicationic diradical

Mithilesh Kumar Nayak et al. Chem Sci. .

Abstract

The isolation of carbon-centered diradicals is always challenging due to synthetic difficulties and their limited stability. Herein we report the synthesis of a trans-1,4-cyclohexylene bridged bis-NHC-CAAC dimer derived thermally stable dicationic diradical. The diradical character of this compound was confirmed by EPR spectroscopy. The variable temperature EPR study suggests the singlet state to be marginally more stable than the triplet state (2J = -5.5 cm-1E ST = 0.065 kJ mol-1)). The presence of the trans-1,4-cyclohexylene bridge is instrumental for the successful isolation of this dicationic diradical. Notably, in the case of ethylene or propylene bridged bis-NHC-CAAC dimers, the corresponding dicationic diradicals are transient and rearrange to hydrogen abstracted products.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. Chemical structures of I–IX.
Scheme 2
Scheme 2. Synthesis of 3Cy, 4Cy, 5Cy, 6Cy, and 7Cy.
Fig. 1
Fig. 1. Molecular structure of 6Cy in the solid state with thermal ellipsoids at the 50% probability level. All hydrogen atoms except on C1 and C4 are omitted for clarity. Selected bond lengths (Å) and bond angles (°): N1–C2 1.380(6), C2–C3 1.439(7), N2–C5 1.366(6), C5–C6 1.431(7); N1–C2–C3 122.3(4), N2–C5–C6 122.5(4).
Fig. 2
Fig. 2. CW EPR spectrum of 6Cy in a 1 : 1 toluene/acetonitrile mixture at 40 K (left), temperature dependence of the half-field transitions between 10 and 140 K (middle), and experimental (black) and simulated (red) EPR spectra of 7Cy in acetonitrile (right). Best-fit simulation parameters: giso = 2.0029, a(14N) = 14.2 MHz (1N), 11.8 MHz (2N), and a(1H) = 3.2 MHz (6H).
Fig. 3
Fig. 3. Molecular structure of 7Cy in the solid state with thermal ellipsoids at the 50% probability level. All hydrogen atoms except on C1 and C4 and three triflate anions are omitted for clarity. Selected bond lengths (Å) and bond angles (°): N1–C2 1.361(4), C2–C3 1.459(4), N2–C5 1.277(3), C5–C6 1.488(4); N1–C2–C3 122.0(3), N2–C5–C6 125.2(2).
Scheme 3
Scheme 3. Synthesis of 5Et/5Pr, 8Et/8Pr, and 9Et/9Pr (Insert: Schematic Presentation of X).
Fig. 4
Fig. 4. Molecular structure of 8Et in the solid state with thermal ellipsoids at the 50% probability level. All hydrogen atoms except on C1, C1′, C2, and C2′ are omitted for clarity. Selected bond lengths (Å) and bond angles (°): N1–C2 1.457(2), C2–C3 1.505(3), C1–C1′ 1.324 (4); N1–C2–C3 111.82(15), N1–C1–C1′ 127.4(3).
Fig. 5
Fig. 5. Cyclic voltammetry plots for 5Cy at a scan rate of 100 mV s−1 and 1000 mV s−1 in acetonitrile (0.1 M [nBu4N][PF6]).
Fig. 6
Fig. 6. Molecular structure of 9Pr in the solid state with thermal ellipsoids at the 50% probability level. All hydrogen atoms except on C2, C1, and C5 are omitted for clarity. Selected bond lengths (Å) and bond angles (°):N1–C3 1.4200(18), C3–C4 1.352(2), C1–C2 1.330(2); N1–C3–C4 122.66(12), N1–C2–C1 129.63(14).

References

    1. Abe M. Chem. Rev. 2013;113:7011–7088. doi: 10.1021/cr400056a. - DOI - PubMed
    2. Stuyver T. Chen B. Zeng T. Geerlings P. Proft F. D. Hoffmann R. Chem. Rev. 2019;119:11291–11351. doi: 10.1021/acs.chemrev.9b00260. - DOI - PubMed
    1. Zhang S. Pink M. Junghoefer T. Zhao W. Hsu S. N. Rajca S. Calzolari A. Boudouris B. W. Casu M. B. Rajca A. J. Am. Chem. Soc. 2022;144:6059–6070. doi: 10.1021/jacs.2c01141. - DOI - PMC - PubMed
    2. Gallagher N. Zhang H. Junghoefer T. Giangrisostomi E. Ovsyannikov R. Pink M. Rajca S. Casu M. B. Rajca A. J. Am. Chem. Soc. 2019;141:4764–4774. doi: 10.1021/jacs.9b00558. - DOI - PMC - PubMed
    3. Rajca A. Olankitwanit A. Rajca S. J. Am. Chem. Soc. 2011;133:4750–4753. doi: 10.1021/ja200708b. - DOI - PubMed
    4. Borden W. T. Hoffmann R. Stuyver T. Chen B. J. Am. Chem. Soc. 2017;139:9010–9018. doi: 10.1021/jacs.7b04232. - DOI - PubMed
    5. Han H. Zhang D. Zhu Z. Wei R. Xiao X. Wang X. Liu Y. Ma Y. Zhao D. J. Am. Chem. Soc. 2021;143:17690–17700. doi: 10.1021/jacs.1c08262. - DOI - PubMed
    6. Arikawa S. Shimizu A. Shiomi D. Sato K. Shintani R. J. Am. Chem. Soc. 2021;143:19599–19605. doi: 10.1021/jacs.1c10151. - DOI - PubMed
    1. Rajca A. Utamapanya S. Xu J. J. Am. Chem. Soc. 1991;113:9235–9241. doi: 10.1021/ja00024a032. - DOI
    2. Shu C. Zhang H. Olankitwanit A. Rajca S. Rajca A. J. Am. Chem. Soc. 2019;141:17287–17294. doi: 10.1021/jacs.9b08711. - DOI - PMC - PubMed
    3. Schmidt D. Son M. Lim J. M. Lin M. J. Krummenacher I. Braunschweig H. Kim D. Würthner F. Angew. Chem., Int. Ed. 2015;54:13980–13984. doi: 10.1002/anie.201507039. - DOI - PubMed
    4. Rajca A. Shiraishia K. Rajcaa S. Chem. Commun. 2009:4372–4374. doi: 10.1039/B909741D. - DOI - PubMed
    1. Jana A. Ishida M. Park J. S. Bähring S. Jeppesen J. O. Sessler J. L. Chem. Rev. 2017;117:2641–2710. doi: 10.1021/acs.chemrev.6b00375. - DOI - PubMed
    2. Schröder H. V. Schalley C. A. Beilstein J. Org. Chem. 2018;14:2163–2185. doi: 10.3762/bjoc.14.190. - DOI - PMC - PubMed
    3. Duvva N. Chilakamarthi U. Giribabu L. Sustainable Energy Fuels. 2017;1:678–688. doi: 10.1039/C7SE00068E. - DOI
    1. Striepe L. Baumgartner T. Chem.–Eur. J. 2017;23:16924–16940. doi: 10.1002/chem.201703348. - DOI - PubMed
    2. Berville M. Richard J. Stolar M. Choua S. Le Breton N. Gourlaouen C. Boudon C. Ruhlmann L. Baumgartner T. Wytko J. A. Weiss J. Org. Lett. 2018;20:8004–8008. doi: 10.1021/acs.orglett.8b03579. - DOI - PubMed
    3. Nakazato T. Takekoshi H. Sakurai T. Shinokubo H. Miyake Y. Angew. Chem., Int. Ed. 2021;60:13877–13881. doi: 10.1002/anie.202103667. - DOI - PubMed