High Efficient Solar Cell Based on Heterostructure Constructed by Graphene and GaAs Quantum Wells
- PMID: 36394152
- PMCID: PMC9839879
- DOI: 10.1002/advs.202204058
High Efficient Solar Cell Based on Heterostructure Constructed by Graphene and GaAs Quantum Wells
Abstract
Despite the fascinating optoelectronic properties of graphene, the power conversion efficiency (PCE) of graphene based solar cells remains to be lifted up. Herein, it is experimentally shown that the graphene/quantum wells/GaAs heterostructure solar cell can reach a PCE of 20.2% and an open-circuit voltage (Voc ) as high as 1.16 V at 90 K. The high efficiency is a result of carrier multiplication (CM) effect of graphene in the graphene/GaAs heterostructure. Especially, the external quantum efficiency (EQE) in the ultraviolet wavelength can be improved up to 72.2% based on the heterostructure constructed by graphene/In0.15 Ga0.85 As/GaAs0.75 P0.25 quantum wells/GaAs. The EQE increases as the light wavelength decreases, which indicates more carriers can be effectively excited by the higher energy photons through CM effect. Owing to these physical characters, the graphene/GaAs heterostructure solar cell will provide a possible way to exceed Shockley-Queisser (S-Q) limit.
Keywords: carrier multiplication; graphene; heterostructure; hot carriers; quantum wells.
© 2022 The Authors. Advanced Science published by Wiley-VCH GmbH.
Conflict of interest statement
The authors declare no conflict of interest.
Figures




References
-
- a) Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Katsnelson M. I., Grigorieva I. V., Dubonos S. V., Firsov A. A., Nature 2005, 438, 197; - PubMed
- b) Herbut I. F., Phys. Rev. Lett. 2006, 97, 146401; - PubMed
- c) Meyer J. C., Geim A. K., Katsnelson M. I., Novoselov K. S., Booth T. J., Roth S., Nature 2007, 446, 60; - PubMed
- d) Rechtsman M. C., Plotnik Y., Zeuner J. M., Song D. H., Chen Z. G., Szameit A., Segev M., Phys. Rev. Lett. 2013, 111, 103901. - PubMed
-
- a) Liao L., Lin Y.‐C., Bao M., Cheng R., Bai J., Liu Y., Qu Y., Wang K. L., Huang Y., Duan X., Nature 2010, 467, 305; - PMC - PubMed
- b) Engel M., Steiner M., Lombardo A., Ferrari A. C., Lohneysen H. V., Avouris P., Krupke R., Nat. Commun. 2012, 3, 906; - PMC - PubMed
- c) Yan Z., Liu G. X., Khan J. M., Balandin A. A., Nat. Commun. 2012, 3, 827; - PubMed
- d) Lee G. H., Yu Y. J., Cui X., Petrone N., Lee C. H., Choi M. S., Lee D. Y., Lee C., Yoo W. J., Watanabe K., Taniguchi T., Nuckolls C., Kim P., Hone J., ACS Nano 2013, 7, 7931; - PubMed
- e) Llinas J. P., Fairbrother A., Barin G. B., Shi W., Lee K., Wu S., Choi B. Y., Braganza R., Lear J., Kau N., Choi W., Chen C., Pedramrazi Z., Dumslaff T., Narita A., Feng X. L., Mullen K., Fischer F., Zettl A., Ruffieux P., Yablonovitch E., Crommie M., Fasel R., Bokor J., Nat. Commun. 2017, 8, 633; - PMC - PubMed
- f) Jiang S. W., Li L. Z., Wang Z. F., Shan J., Mak K. F., Nat. Electron. 2019, 2, 159.
-
- a) Liu M., Yin X., Ulin‐Avila E., Geng B., Zentgraf T., Ju L., Wang F., Zhang X., Nature 2011, 474, 64; - PubMed
- b) Li X., Lin S., Lin X., Xu Z., Wang P., Zhang S., Zhong H., Xu W., Wu Z., Fang W., Opt. Express 2016, 24, 134; - PubMed
- c) Lin S., Lu Y., Xu J., Feng S., Li J., Nano Energy 2017, 40, 122;
- d) Hong H., Zhang J., Zhang J., Qiao R., Yao F., Cheng Y., Wu C., Lin L., Jia K., Zhao Y., Zhao Q., Gao P., Xiong J., Shi K., Yu D., Liu Z., Meng S., Peng H., Liu K. H., J. Am. Chem. Soc. 2018, 140, 14952. - PubMed
- e) Chen K., Zhou X., Cheng X., Qiao R., Cheng Y., Liu C., Xie Y., Yu W., Yao F., Sun Z., Wang F., Liu K., Liu Z. F., Nat. Photonics 2019, 13, 754;
- f) Kim J., Bergren M., Park J., Adhikari S., Lorke M., Frauenheim T., Choe D. H., Kim B., Choi H., Gregorkiewicz T., Lee Y. H., Nat. Commun. 2019, 10, 5488; - PMC - PubMed
- g) Wei J., Li Y., Wang L., Liao W., Dong B., Xu C., Zhu C., Ang K.‐W., Qiu C.‐W., Lee C., Nat. Commun. 2020, 11, 6404; - PMC - PubMed
- h) Su S., Li H., Huang J., Zhang Z., Liang C., Jiang W., Deng A., Liu K., Shi Z., Qian D., Tao H. H., ACS Appl. Mater. Interfaces 2020, 12, 55382. - PubMed
-
- a) Liu L., Yu Y., Yan C., Li K., Zheng Z., Nat. Commun. 2015, 6, 7260; - PMC - PubMed
- b) Kireev D., Sel K., Ibrahim B., Kumar N., Akbari A., Jafari R., Akinwande D., Nat. Nanotechnol. 2022; - PubMed
- c) Afroj S., Tan S. R., Abdelkader A. M., Novoselov K. S., Karim N., Adv. Funct. Mater. 2020, 30, 2000293.
-
- a) Liu F., Song S. Y., Xue D. F., Zhang H. J., Adv. Mater. 2012, 24, 1089; - PubMed
- b) Zhang Y., Xia X. H., Liu B., Deng S. J., Xie D., Liu Q., Wang Y. D., Wu J. B., Wang X. L., Tu J. P., Adv. Energy Mater. 2019, 9, 1803342.
Grants and funding
- 51202216/National Natural Science Foundation of China
- 51551203/National Natural Science Foundation of China
- 61774135/National Natural Science Foundation of China
- 2013QNA5007/Special Foundation of Young Professor of Zhejiang University
- LR21F040001/Outstanding Youth Fund of Zhejiang Natural Science Foundation of China
LinkOut - more resources
Full Text Sources
Research Materials