Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jan;10(2):e2204058.
doi: 10.1002/advs.202204058. Epub 2022 Nov 17.

High Efficient Solar Cell Based on Heterostructure Constructed by Graphene and GaAs Quantum Wells

Affiliations

High Efficient Solar Cell Based on Heterostructure Constructed by Graphene and GaAs Quantum Wells

Xutao Yu et al. Adv Sci (Weinh). 2023 Jan.

Abstract

Despite the fascinating optoelectronic properties of graphene, the power conversion efficiency (PCE) of graphene based solar cells remains to be lifted up. Herein, it is experimentally shown that the graphene/quantum wells/GaAs heterostructure solar cell can reach a PCE of 20.2% and an open-circuit voltage (Voc ) as high as 1.16 V at 90 K. The high efficiency is a result of carrier multiplication (CM) effect of graphene in the graphene/GaAs heterostructure. Especially, the external quantum efficiency (EQE) in the ultraviolet wavelength can be improved up to 72.2% based on the heterostructure constructed by graphene/In0.15 Ga0.85 As/GaAs0.75 P0.25 quantum wells/GaAs. The EQE increases as the light wavelength decreases, which indicates more carriers can be effectively excited by the higher energy photons through CM effect. Owing to these physical characters, the graphene/GaAs heterostructure solar cell will provide a possible way to exceed Shockley-Queisser (S-Q) limit.

Keywords: carrier multiplication; graphene; heterostructure; hot carriers; quantum wells.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Device structure and characteristic test of graphene/GaAs heterostructure solar cell. a) Schematics structure of the graphene/GaAs heterostructure solar cell. b) Raman characterization of graphene onto the SiO2/Si substrate after wet transferring. c) EQE of solar cell with the scanning wavelength from 320 nm to 1100 nm. d) JV characteristic curve: black and red curves represent dark condition and exposed in AM 1.5 light source, individually. The active area of graphene/GaAs heterostructure solar cell was 0.03 cm2.
Figure 2
Figure 2
The physical schematic of graphene/GaAs heterostructure solar cell. a) Schematic band structure of graphene/GaAs heterostructure. b) Main kinds of processes of HCs in graphene/GaAs heterostructure: ①light excitation; ②CM; ③ recombination. c) Schematic diagram of carrier kinetics in graphene/GaAs solar cell with the sunlight. d) The dark JV curve and e) the V oc measurement of graphene/GaAs heterostructure solar cell under the AM 1.5 with ambient temperature varying from 300 to 90 K. The active area of device is 0.03 cm2.
Figure 3
Figure 3
Schematic and performance characterization of graphene/QWs/GaAs solar cell. a) Schematic representation graphene/QWs/GaAs solar cell: the QWs are composed of GaAs0.75P0.25 /In0.15Ga0.85As with 10 periods. b) Schematic energy band diagram of graphene/QWs/GaAs structure. c) The comparation of EQE test during the short‐wavelength from 320 to 480 nm: black and red curves represent graphene/GaAs and graphene/QWs/GaAs structure, individually. d) JV curve of graphene/QWs/GaAs solar cell at the room temperature: black and red curves represent dark condition and under AM 1.5, individually. e) JV characteristics curves under the dark state with various temperature from 300 to 90 K. The active area of graphene/QWs/GaAs heterostructure solar cell is 0.03 cm2.
Figure 4
Figure 4
The performance characterization test of graphene/QWs/GaAs heterostructure solar cell. a) The V oc, b) J sc, c) PCE, and d) FF of graphene/QWs/GaAs heterostructure solar cell under the temperature of 300, 270, 240, 210, 180, 150, 120, 90 K. All the measurement is under AM 1.5 and the active area of graphene/QWs/GaAs heterostructure solar cells are 0.03 cm2.

References

    1. a) Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Katsnelson M. I., Grigorieva I. V., Dubonos S. V., Firsov A. A., Nature 2005, 438, 197; - PubMed
    2. b) Herbut I. F., Phys. Rev. Lett. 2006, 97, 146401; - PubMed
    3. c) Meyer J. C., Geim A. K., Katsnelson M. I., Novoselov K. S., Booth T. J., Roth S., Nature 2007, 446, 60; - PubMed
    4. d) Rechtsman M. C., Plotnik Y., Zeuner J. M., Song D. H., Chen Z. G., Szameit A., Segev M., Phys. Rev. Lett. 2013, 111, 103901. - PubMed
    1. a) Liao L., Lin Y.‐C., Bao M., Cheng R., Bai J., Liu Y., Qu Y., Wang K. L., Huang Y., Duan X., Nature 2010, 467, 305; - PMC - PubMed
    2. b) Engel M., Steiner M., Lombardo A., Ferrari A. C., Lohneysen H. V., Avouris P., Krupke R., Nat. Commun. 2012, 3, 906; - PMC - PubMed
    3. c) Yan Z., Liu G. X., Khan J. M., Balandin A. A., Nat. Commun. 2012, 3, 827; - PubMed
    4. d) Lee G. H., Yu Y. J., Cui X., Petrone N., Lee C. H., Choi M. S., Lee D. Y., Lee C., Yoo W. J., Watanabe K., Taniguchi T., Nuckolls C., Kim P., Hone J., ACS Nano 2013, 7, 7931; - PubMed
    5. e) Llinas J. P., Fairbrother A., Barin G. B., Shi W., Lee K., Wu S., Choi B. Y., Braganza R., Lear J., Kau N., Choi W., Chen C., Pedramrazi Z., Dumslaff T., Narita A., Feng X. L., Mullen K., Fischer F., Zettl A., Ruffieux P., Yablonovitch E., Crommie M., Fasel R., Bokor J., Nat. Commun. 2017, 8, 633; - PMC - PubMed
    6. f) Jiang S. W., Li L. Z., Wang Z. F., Shan J., Mak K. F., Nat. Electron. 2019, 2, 159.
    1. a) Liu M., Yin X., Ulin‐Avila E., Geng B., Zentgraf T., Ju L., Wang F., Zhang X., Nature 2011, 474, 64; - PubMed
    2. b) Li X., Lin S., Lin X., Xu Z., Wang P., Zhang S., Zhong H., Xu W., Wu Z., Fang W., Opt. Express 2016, 24, 134; - PubMed
    3. c) Lin S., Lu Y., Xu J., Feng S., Li J., Nano Energy 2017, 40, 122;
    4. d) Hong H., Zhang J., Zhang J., Qiao R., Yao F., Cheng Y., Wu C., Lin L., Jia K., Zhao Y., Zhao Q., Gao P., Xiong J., Shi K., Yu D., Liu Z., Meng S., Peng H., Liu K. H., J. Am. Chem. Soc. 2018, 140, 14952. - PubMed
    5. e) Chen K., Zhou X., Cheng X., Qiao R., Cheng Y., Liu C., Xie Y., Yu W., Yao F., Sun Z., Wang F., Liu K., Liu Z. F., Nat. Photonics 2019, 13, 754;
    6. f) Kim J., Bergren M., Park J., Adhikari S., Lorke M., Frauenheim T., Choe D. H., Kim B., Choi H., Gregorkiewicz T., Lee Y. H., Nat. Commun. 2019, 10, 5488; - PMC - PubMed
    7. g) Wei J., Li Y., Wang L., Liao W., Dong B., Xu C., Zhu C., Ang K.‐W., Qiu C.‐W., Lee C., Nat. Commun. 2020, 11, 6404; - PMC - PubMed
    8. h) Su S., Li H., Huang J., Zhang Z., Liang C., Jiang W., Deng A., Liu K., Shi Z., Qian D., Tao H. H., ACS Appl. Mater. Interfaces 2020, 12, 55382. - PubMed
    1. a) Liu L., Yu Y., Yan C., Li K., Zheng Z., Nat. Commun. 2015, 6, 7260; - PMC - PubMed
    2. b) Kireev D., Sel K., Ibrahim B., Kumar N., Akbari A., Jafari R., Akinwande D., Nat. Nanotechnol. 2022; - PubMed
    3. c) Afroj S., Tan S. R., Abdelkader A. M., Novoselov K. S., Karim N., Adv. Funct. Mater. 2020, 30, 2000293.
    1. a) Liu F., Song S. Y., Xue D. F., Zhang H. J., Adv. Mater. 2012, 24, 1089; - PubMed
    2. b) Zhang Y., Xia X. H., Liu B., Deng S. J., Xie D., Liu Q., Wang Y. D., Wu J. B., Wang X. L., Tu J. P., Adv. Energy Mater. 2019, 9, 1803342.

LinkOut - more resources